Difference between revisions of "YunnaWei DataPreparation"

From Visual Analytics and Applications
Jump to navigation Jump to search
 
(9 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
<div style="background:#002060; border:#002060; padding-left:15px; text-align:center;">
 +
<font size = 5; color="#FFFFFF"><span style="font-family:Century Gothic;">Yunna Wei - ISSS608 Visual Analytics and Applications_Assignment1</span></font>
 +
</div>
 +
<!--MAIN HEADER -->
 +
{|style="background-color:#002060;" width="100%" cellspacing="0" cellpadding="0" valign="top" border="0"  |
 +
| style="font-family:Century Gothic; font-size:100%; solid #000000; background:#002060; text-align:center;" width="16.6%" | 
 +
;
 +
[[ISSS608 2016-17 T3 Assign WEI YUNNA| <font color="#FFFFFF">Introduction</font>]]
 +
 +
| style="font-family:Century Gothic; font-size:100%; solid #1B338F; background:#C00000; text-align:center;" width="16.6%" | 
 +
;
 +
[[YunnaWei_DataPreparation| <font color="#FFFFFF">Data Preparation</font>]]
 +
 +
| style="font-family:Century Gothic; font-size:100%; solid #1B338F; background:#002060; text-align:center;" width="16.6%" | 
 +
;
 +
[[YunnaWei_OverviewExploration| <font color="#FFFFFF">Overview Exploration</font>]]
 +
 +
| style="font-family:Century Gothic; font-size:100%; solid #1B338F; background:#002060; text-align:center;" width="16.6%" | 
 +
;
 +
[[YunnaWei_PatternDetection| <font color="#FFFFFF">Pattern Detectoin</font>]]
 +
 +
| style="font-family:Century Gothic; font-size:100%; solid #1B338F; background:#002060; text-align:center;" width="16.6%" | 
 +
;
 +
[[YunnaWei_InteractiveVisualization| <font color="#FFFFFF">Interactive_Visualization</font>]]
 +
 +
| style="font-family:Century Gothic; font-size:100%; solid #1B338F; background:#002060; text-align:center;" width="16.6%" | 
 +
;
 +
[[YunnaWei_Comments| <font color="#FFFFFF">Comments</font>]]
 +
 +
|  &nbsp;
 +
|}
 +
<!--MAIN HEADER -->
 +
 +
  
 
= Data Preparation =
 
= Data Preparation =
 
<p align="justify"> The given data sets are respectively a map and a csv file.</p>
 
<p align="justify"> The given data sets are respectively a map and a csv file.</p>
 
=== Mapping the coordinates of each location ===
 
=== Mapping the coordinates of each location ===
<p align="justify">For the map, it will be useful to get the coordinates of each location so that we can plot the map with traffic going through to gave a whole picture of how the traffic looks like. Tableau is used to manually label the coordinates of each location. The locations are mapped within a 200x200 sacle.</p>
+
<table  cellspacing="10" border="1">
[[File:WYN Corrdinates.png|600 px|left]]
+
<tr>
 +
<td>For the map, it will be useful to get the coordinates of each location so that we can plot the map with traffic going through to gave a whole picture of how the traffic looks like. Tableau is used to manually label the coordinates of each location. The locations are mapped within a 200x200 scale.</td>
 +
<td>[[File:WYN Corrdinates.png|700 px|left]]</td>
 +
</tr>
 +
</table>
  
 
===Creating new variables ===
 
===Creating new variables ===
</p align="justify">The given csv data set has the variables of Car_id, timestamp,car-type, and gate name. To find out more information about the traffic patterns,
 
new variables should be created based on the given variables.</p>
 
 
==== Travelling Path ====
 
==== Travelling Path ====
 +
<table  cellspacing="10" border="1">
 +
<tr>
 +
<td>The given csv data set has the variables of Car_id, timestamp,car-type, and gate name. To find out more information about the traffic patterns, new variables should be created based on the given variables.</td>
 +
<td>
 +
[[File:WYN Path.png|center]]
 +
</td>
 +
</tr>
 +
</table>
 +
==== Other Variables ====
 +
<table cellspacing="10" border="1">
 +
<tr>
 +
<td>
 +
<ul>
 +
<li>Camping or Not: Organizing the activities of visitors into camping or Noncamping.</li>
 +
<li>Travelling Duration: Calculate the travelling duration of each car id and categorize them into travelers whose duration is within one day and travelers whose duration is more than one day.</li>
 +
<li>Visiting month: Calculate the visiting month of each car id.</li>
 +
<li>Visiting quarter: Calculate the visiting quarter of each car id.</li>
 +
<li>Entering hour: Calculate the entering hour of each car id.</li>
 +
<li>Day or Night Trip: Based on the entering hour, categorize the traffic into day or night traffic.</li>
 +
</ul>
 +
</td>
 +
<td>
 +
[[File:WYN Other Variables.png|center]]
 +
</td>
 +
</tr>
 +
</table>

Latest revision as of 11:13, 12 July 2017

Yunna Wei - ISSS608 Visual Analytics and Applications_Assignment1

Introduction

Data Preparation

Overview Exploration

Pattern Detectoin

Interactive_Visualization

Comments

 


Data Preparation

The given data sets are respectively a map and a csv file.

Mapping the coordinates of each location

For the map, it will be useful to get the coordinates of each location so that we can plot the map with traffic going through to gave a whole picture of how the traffic looks like. Tableau is used to manually label the coordinates of each location. The locations are mapped within a 200x200 scale.
WYN Corrdinates.png

Creating new variables

Travelling Path

The given csv data set has the variables of Car_id, timestamp,car-type, and gate name. To find out more information about the traffic patterns, new variables should be created based on the given variables.
WYN Path.png

Other Variables

  • Camping or Not: Organizing the activities of visitors into camping or Noncamping.
  • Travelling Duration: Calculate the travelling duration of each car id and categorize them into travelers whose duration is within one day and travelers whose duration is more than one day.
  • Visiting month: Calculate the visiting month of each car id.
  • Visiting quarter: Calculate the visiting quarter of each car id.
  • Entering hour: Calculate the entering hour of each car id.
  • Day or Night Trip: Based on the entering hour, categorize the traffic into day or night traffic.
WYN Other Variables.png