ANLY482 AY2017-18T2 Group02 Project Overview

From Analytics Practicum
Revision as of 09:00, 15 April 2018 by Xzho.2014 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Home   Project Overview   Findings & Insights   Documentation   Project Management   Back to project list



PROJECT BACKGROUND

DonorsChoose.org is a non-profit organisation seeking to improve the education system in America. The DonorsChoose.org platform is a civic crowdfunding platform that allows public school teachers across America to reach out to potential donors. Donors can choose the type of projects to fund and can donate any amount to the cause of their liking. Since its founding in 2000, the platform has funded over a million projects and benefited over 27 million students.

The process starts with teachers submitting their project proposals, detailing the resources and materials they require and how the resources will benefit their students. Upon submission to DonorsChoose.org, volunteers will review the project submission and determine whether it can be approved.As the number of project submissions is expected to increase beyond 500,000 in 2018, DonorsChoose.org has to scale their efforts in the project approval process as well. A prediction model will help facilitate the process, but close attention has to be paid to the model such that it can selectively discern deserving projects.

OBJECTIVES

Key Objectives

The objective our project would be to develop a model for DonorsChoose.org to predict the likely approval status of projects submitted by teachers. Based on past data on the project, the teacher and the school, we would seek to build a model that could determine the projects’ approval rate. Ideally, the model would have high precision and recall rate.

The expected outcome would be for DonorsChoose.org to automate part of its project screening process, and redirect efforts into examining proposals that need more assistance. The project will also shed insight into how organisations can utilize prediction models to scale manual processes in an efficient manner while preserving accuracy.


STAKEHOLDERS

Students: Friedemann & Josh

Supervisor: Prof. Kam Tin Seong