AY1718 T2 Group21 Midterm Findings

From Analytics Practicum
Revision as of 22:33, 25 February 2018 by Eunice.wang.2014 (talk | contribs)
Jump to navigation Jump to search
AY1718 T2 Group21 Logo.png

HOME

ABOUT US

PROJECT OVERVIEW

FINDINGS

DOCUMENTATION

PROJECT MANAGEMENT

BACK TO PROJECTS

Midterm

Final



Executive Summary


Problem Summary: Brainsmith, an e-commerce company that sells children educational products has been operating for over two years but their website conversion rates have been lower than industry average. Using customer behaviour patterns and purchase data - we hope to help identify website traffic patterns in order to identify possible methods to help the company increase their conversion rates


Definitions:

  • User: Every person who has every accessed the site
  • Customer: A website user that has made at least 1 purchases
  • User: A website user that has not yet made any purchases


Conversion Rates:
We segmented conversion into two approaches:

1. Customer Retention With customer behaviour data and information such as website pages clicked before purchasing and number of user sessions before purchase- we hope to identify factors that correlate with
2. Customer Acquisition With information on both Customers and Users, we hope to find correlations between the two sets of data.


Data Processing


Data Cleaning:
The data cleaning process was two fold:

1. Rechecking for human error: Matching of all corresponding web behaviour with the customers - pages visited and actions taken on the website, since the variables and data set were defined through human web-crawling and manual entry
2. Adapting and creating some sub-data files: This was done for ease of access to load onto R and briefly for Tableau and to de-aggregate our data, keep it succinct, useful and effective We recoded columns in our data, using R, as per our statistics analysis required.


Using preliminary visualisations, We clean these observation this out of our analysis, so as to avoid bias and skew.


Exploration and Visualisation

Data Exploration Methodology:
Most of our exploratory research and insight derivation has been through a trial basis by loading our relevant data onto Tableau. We looked at scatter plots, box plots, histograms and bar charts with varying degrees of complexity depending on the number of variables involved and made sense from a business perspective. Keeping in mind our business objectives, and the emphasis laid on different factors by our client, we focused our attention on certain key variable that we are going to be discussing.


Initially, when analysing basic level data variables, for example the Average Session Duration on users on the website, as well as the Total No. of Page Views per customer, we found anomalies in terms of outliers, like these ones. These could be the founders and managers of the company in-charge of the website themselves, or teams like us, working in tandem projects with them.