ANLY482 AY2016-17 T2 Group 2 Project Overview Methodology

From Analytics Practicum
Revision as of 16:27, 8 January 2017 by Leejia.yong.2013 (talk | contribs)
Jump to navigation Jump to search


HOME

 

PROJECT OVERVIEW

 

FINDINGS

 

PROJECT DOCUMENTATION

 

PROJECT MANAGEMENT

Background Data Source Methodology


Tools Used

Based on the client requirements for the project, the programming language that we will be using is Python. Python has a mature and growing ecosystem of open-source tools for mathematics and data analysis. Jupyter Notebook is the best IDE for Python and data analytics. Some of the libraries that we will be venturing to are:

  • Python Natural Language Toolkit (NLTK)
  • Scikit-learn
  • TensorFlow
  • pandas

Methodology

Data Collection

Kaisou will provide us with 3 datasets: musical data, concert data and customer profile data. The datasets consists of transaction records from both phone booking and internet booking channels as well as customer details records. Apart from the data provided, we will also look into collecting external data that may affect our analysis such as the dates of public holidays.

Exploratory Data Analysis (EDA)

In the initial stage of this project, we will examine the dataset to have a better understanding of the various aspects of the dataset. This will also help us in the next stage of data preparation by identifying outliers and anomalies. Furthermore, we can perform normalization and transformation on the data if they are not consistent. We will also use EDA to help us identify important variables for subsequent steps such as correlation analysis.
Some of the analysis which we will look at are the frequencies of transactions for account holders in relation to the different bet types and the popular time of transaction, type of transaction and amount of transaction.

Data Preparation

Before performing any further data analysis, the first step is to prepare the data. We will clean the data to handle outliers and missing values. In addition, we will perform data normalization and transformation on the given dataset.
For outliers, we will first determine if the values are due to human or system error. If it is due to human or system error, we can safely remove that transaction from our analysis. Otherwise, we will conduct separate analysis of these outliers values.
For missing values, we will determine the number of missing values. If the number is significant, we will use prediction techniques to predict these values based on the data set. Otherwise, we will remove these transactions from our analysis so that it will not affect our findings.
Lastly, we will perform data normalization and transformation. Some fields in the phone purchasing dataset and internet purchasing dataset have different scales and values even though they represent the same information. Also, due to system changes in Kaisou's IT infrastructure, there are some differences in the way the data is stored and named. Therefore, we will perform data normalization and transformation to ensure that values throughout both dataset are consistent before we can perform any analysis.

Association Rule Mining

Association rule mining is a rule-based method to discover interesting relations in the dataset. We will conduct analysis on the betting transactions to determine betting patterns, which are known as rules, between customers and the different betting channels. These rules can then be used by Singapore Pools as the basis for marketing strategies for their products.

Correlation Analysis

We will perform correlation analysis and observe the interactions of various variables, which we have identified from EDA, with the bet amount. From the correlation coefficient, we will be able to determine the strengths of these relationships and find out does these relationships correlate to the betting patterns for both betting channels.

Dashboard

Following the analysis that was carried out, a dashboard will be built to aid in the visualization of the findings. The dashboard will showcase the important variables and its interactions with customer purchasing behaviour. This will be an easy way for the customer engaging teams to use and understand specific behaviours of their customers.

Recommendations & Insights

From our analysis and dashboard, we seek to assist Kaisou in understanding the characteristics of their customers. We will be proposing business strategies and recommendations to them based on the insights that we have uncovered.