Difference between revisions of "AY1516 T2 Team AP Analysis PostInterimPlan"
Line 39: | Line 39: | ||
− | ==<div style="background: #232AE8; line-height: 0.3em; font-family:helvetica; border-left: #6C7A89 solid 15px;"><div style="border-left: #FFFFFF solid 5px; padding:15px;font-size:15px;"><font color= "#ffffff"><strong>Facebook Graph API</strong></font></div></div>== | + | ==<div style="background: #232AE8; line-height: 0.3em; font-family:helvetica; border-left: #6C7A89 solid 15px;"><div style="border-left: #FFFFFF solid 5px; padding:15px;font-size:15px;"><font color= "#ffffff"><strong>Facebook Graph API (Post Interim Plan)</strong></font></div></div>== |
<p>Apart from analysing one of SGAG's popular social network Twitter, we plan to leverage the Facebook Graph API. Drawing from our experience using the twitter API, we are looking to crawl Facebook data in a similar fashion, crawling, retrieving and aggregating post-level Facebook data. Hopefully, this process can yield conclusive results about the SGAG's social network (likes, shares, etc) on Facebook. </p> | <p>Apart from analysing one of SGAG's popular social network Twitter, we plan to leverage the Facebook Graph API. Drawing from our experience using the twitter API, we are looking to crawl Facebook data in a similar fashion, crawling, retrieving and aggregating post-level Facebook data. Hopefully, this process can yield conclusive results about the SGAG's social network (likes, shares, etc) on Facebook. </p> | ||
− | ==<div style="background: #232AE8; line-height: 0.3em; font-family:helvetica; border-left: #6C7A89 solid 15px;"><div style="border-left: #FFFFFF solid 5px; padding:15px;font-size:15px;"><font color= "#ffffff"><strong>Approach</strong></font></div></div>== | + | ==<div style="background: #232AE8; line-height: 0.3em; font-family:helvetica; border-left: #6C7A89 solid 15px;"><div style="border-left: #FFFFFF solid 5px; padding:15px;font-size:15px;"><font color= "#ffffff"><strong>Approach (Post Interim Plan)</strong></font></div></div>== |
<table rules="all" width="80%" cellpadding="6" cellspacing="3" style="margin: 1em auto 1em auto; font-weight: normal; border-style: solid"> | <table rules="all" width="80%" cellpadding="6" cellspacing="3" style="margin: 1em auto 1em auto; font-weight: normal; border-style: solid"> | ||
Line 73: | Line 73: | ||
</table> | </table> | ||
+ | |||
+ | ==<div style="background: #232AE8; line-height: 0.3em; font-family:helvetica; border-left: #6C7A89 solid 15px;"><div style="border-left: #FFFFFF solid 5px; padding:15px;font-size:15px;"><font color= "#ffffff"><strong>Data Retrieval</strong></font></div></div>== | ||
+ | |||
+ | Constructing the graph from scratch involved the usage of python code to retrieve posts from SGAG's Facebook account for posts dating back 10 months. This involved connecting to the Facebook graph API programatically to formulate a csv file that resembles this structure: | ||
+ | |||
+ | <table rules="all" width="80%" cellpadding="6" cellspacing="3" style="margin: 1em auto 1em auto; font-weight: normal; border-style: solid"> | ||
+ | <tr style="background-color:#E1F4FF;"><th>Post ID</th><th>List of Likers</th><th>List of Commenters</th></tr> | ||
+ | |||
+ | <tr><td width="10%" border="1" align="center">378167172198277_1187053787976274</td> | ||
+ | <td width="30%" border="1" align="center">10206930900524483;1042647259126948;10204920589409318; ...</td> | ||
+ | <td width="60%" align="center">10153979571077290;955321504523847;1701864973403904; ...</td></tr> | ||
+ | |||
+ | </table> | ||
+ | |||
+ | Where each user ID in List of Likers and List of Commenters are separated by a semicolon, and tagged to each post. |
Revision as of 16:49, 9 April 2016
Data Retrieval & Manipulation | Findings | Post interim plan |
---|
Facebook Graph API (Post Interim Plan)
Apart from analysing one of SGAG's popular social network Twitter, we plan to leverage the Facebook Graph API. Drawing from our experience using the twitter API, we are looking to crawl Facebook data in a similar fashion, crawling, retrieving and aggregating post-level Facebook data. Hopefully, this process can yield conclusive results about the SGAG's social network (likes, shares, etc) on Facebook.
Approach (Post Interim Plan)
Step | Expected Result | Notes |
---|---|---|
1 | Collect all post data |
|
2 | All user objects for each like, for every post |
|
3 | "Comment-Level" per post and number of shares on a "user-level" |
|
Data Retrieval
Constructing the graph from scratch involved the usage of python code to retrieve posts from SGAG's Facebook account for posts dating back 10 months. This involved connecting to the Facebook graph API programatically to formulate a csv file that resembles this structure:
Post ID | List of Likers | List of Commenters |
---|---|---|
378167172198277_1187053787976274 | 10206930900524483;1042647259126948;10204920589409318; ... | 10153979571077290;955321504523847;1701864973403904; ... |
Where each user ID in List of Likers and List of Commenters are separated by a semicolon, and tagged to each post.