Difference between revisions of "ANLY482 AY2017-18T2 Group10 Project Overview: Data"

From Analytics Practicum
Jump to navigation Jump to search
Line 55: Line 55:
  
 
It is noted that the sponsor only performs stock taking once a month and hence only monthly inventory data is available. This means that there are no daily or weekly stock levels recorded. However, the objective of the project is to be able to forecast the demand for each ingredient on a daily basis. The proposed idea is to first forecast the demand for a particular month. Subsequently, we will use the PLU data which contains the number of pax daily to breakdown the forecasted monthly usage into a daily value.
 
It is noted that the sponsor only performs stock taking once a month and hence only monthly inventory data is available. This means that there are no daily or weekly stock levels recorded. However, the objective of the project is to be able to forecast the demand for each ingredient on a daily basis. The proposed idea is to first forecast the demand for a particular month. Subsequently, we will use the PLU data which contains the number of pax daily to breakdown the forecasted monthly usage into a daily value.
 
 
 
</div>
 
</div>
  
==<div style="background: #ffffff; padding: 17px;padding:0.3em; letter-spacing:0.1em; line-height: 0.1em;  text-indent: 10px; font-size:17px; text-transform:uppercase; font-weight: light; font-family: 'Century Gothic';  border-left:8px solid #1b96fe; margin-bottom:5px"><font color= #000000><strong>PLU Data Preparation Process</strong></font></div>==
+
==<div style="background: #ffffff; padding: 17px;padding:0.3em; letter-spacing:0.1em; line-height: 0.1em;  text-indent: 10px; font-size:17px; text-transform:uppercase; font-weight: light; font-family: 'Century Gothic';  border-left:8px solid #1b96fe; margin-bottom:5px"><font color= #000000><strong>Purchase Data Preparation Process</strong></font></div>==
 
 
 
<div style="margin:0px; padding: 10px; background: #f2f4f4; font-family: Century Gothic, Open Sans, Arial, sans-serif; border-radius: 7px; text-align:left; font-size: 15px">
 
<div style="margin:0px; padding: 10px; background: #f2f4f4; font-family: Century Gothic, Open Sans, Arial, sans-serif; border-radius: 7px; text-align:left; font-size: 15px">
As there was a change in format of the Monthly Inventory Data from October 2017 onwards, there are two main different types of formats for the Monthly Inventory Data. The two different formats have different column names and different number of columns. Hence, to perform our analysis and EDA, we had to process the two formats separately. Using Python scripts, we extracted the necessary columns from each file, standardised the column names and compiled them into a giant CSV data file - ‘Inventory_Processed_2016-2017.csv’
 
  
Daily PLU refers to the number of patrons that each outlet has daily, in various categories (Adult, Child, Student, Tourist, Senior and FOC Pax) There were severall issues with the data. Firstly, all the days are in the same row, which makes it hard to analyse the data. In addition, there is a column “Dept_Type2” in the sample data which is irrelevant to us, for example “Soup Base”. According to our sponsor, we are only interested in 6 categories (Adult, Student, Senior, Tourist, Child and FOC PAX). There are also many different rows of the same category due to the irrelevant description. For example, an adult in Seoul Garden can have different descriptions, such as “Wkend Adult Dinner Buffet” or ‘Wkday Adult Dinner Buffet”, since this is irrelevant to us in the analysis, we would be grouping all the categories into one row for each outlet. After, cleaning all the data issues, we concatenate the various Daily PLU data into one file to make it easier to analyse the daily patrons.
+
[[File:Tennet inventory processing diagram.png|border|center|600px]]]
  
[[File:Tennet DailyPLU Cleaning diagram.png|border|center|300px]]]
 
 
</div>
 
</div>
  
Line 79: Line 74:
  
 
<div style="margin:0px; padding: 10px; background: #f2f4f4; font-family: Century Gothic, Open Sans, Arial, sans-serif; border-radius: 7px; text-align:left; font-size: 15px">
 
<div style="margin:0px; padding: 10px; background: #f2f4f4; font-family: Century Gothic, Open Sans, Arial, sans-serif; border-radius: 7px; text-align:left; font-size: 15px">
 +
Sales data refers to the daily sales that XYZ Company everyday for each outlet broken down to various categories, like Card, Nets, cash, etc. For the sales data, we have the data between December 2015 to November 2017. </br>
 +
 +
Since the sales data is relatively clean and ready to be analysed, there is very little to do. Our group only prepared the data by adding another calculated column called “revenue”, which is the sum of column “nett_sales” and “service”, and we concatenated all 4 excel files into one single file. Using Python scripts, we standardised the column names and compiled them into a giant CSV data file.
 +
</div>
 +
 +
==<div style="background: #ffffff; padding: 17px;padding:0.3em; letter-spacing:0.1em; line-height: 0.1em;  text-indent: 10px; font-size:17px; text-transform:uppercase; font-weight: light; font-family: 'Century Gothic';  border-left:8px solid #1b96fe; margin-bottom:5px"><font color= #000000><strong>PLU Data Preparation Process</strong></font></div>==
  
 +
<div style="margin:0px; padding: 10px; background: #f2f4f4; font-family: Century Gothic, Open Sans, Arial, sans-serif; border-radius: 7px; text-align:left; font-size: 15px">
 +
Daily PLU refers to the number of patrons that each outlet has daily, in various categories (Adult, Child, Student, Tourist, Senior and FOC Pax) There were several issues with the data. Firstly, all the days are in the same row, which makes it hard to analyse the data. In addition, there is a column “Dept_Type2” in the sample data which is irrelevant to us, for example “Soup Base”. According to our sponsor, we are only interested in 6 categories (Adult, Student, Senior, Tourist, Child and FOC PAX). There are also many different rows of the same category due to the irrelevant description. For example, an adults from an outlet can have different descriptions, such as “Wkend Adult Dinner Buffet” or ‘Wkday Adult Dinner Buffet”, since this is irrelevant to us in the analysis, we would be grouping all the categories into one row for each outlet. After, cleaning all the data issues, we concatenate the various Daily PLU data into one file to make it easier to analyse the daily patrons.
 +
 +
[[File:Tennet DailyPLU Cleaning diagram.png|border|center|300px]]]
 
</div>
 
</div>
 
<!-- End Body --->
 
<!-- End Body --->

Revision as of 16:52, 25 February 2018

Tennet logo.png


HOME

ABOUT US

PROJECT OVERVIEW

ANALYSIS & FINDINGS

PROJECT MANAGEMENT

BACK TO MAIN ANLY482

Overview

Data

Methodology

Due to confidentiality, we will not be able to upload any charts onto the wiki. The fully disclosed analysis report is available in our Interim Report submission.

Data Overview

The data provided by the sponsor is in Microsoft Excel format for each outlet by month. The team has used Python for the cleaning and preparation of the data. For now, they have provided the data for a total of 24 months from Dec 2015 to Dec 2017. The data that was given to us are Inventory Data, Monthly PLU (Programmable Logic Unit) and Sales Data. One limitation is that the company has recently changed the format of the inventory data, and thus we would be working with 2 different formats of inventory data. Below is a short description of the each dataset:


Dataset NameDataset Description
InventoryDescribes the inventory order for each outlet the data is updated daily.
SalesDescribes the sales for each outlet for each month daily.
MonthPLUDescribes the number of patrons for each outlet according to the type of meal daily.


It is noted that the sponsor only performs stock taking once a month and hence only monthly inventory data is available. This means that there are no daily or weekly stock levels recorded. However, the objective of the project is to be able to forecast the demand for each ingredient on a daily basis. The proposed idea is to first forecast the demand for a particular month. Subsequently, we will use the PLU data which contains the number of pax daily to breakdown the forecasted monthly usage into a daily value.

Purchase Data Preparation Process

Tennet inventory processing diagram.png
]

Inventory Data Preparation Process

As there was a change in format of the Monthly Inventory Data from October 2017 onwards, there are two main different types of formats for the Monthly Inventory Data. The two different formats have different column names and different number of columns. Hence, to perform our analysis and EDA, we had to process the two formats separately. Using Python scripts, we extracted the necessary columns from each file, standardised the column names and compiled them into a giant CSV data file - ‘Inventory_Processed_2016-2017.csv’

Tennet inventory processing diagram.png
]

Sales Data Preparation Process

Sales data refers to the daily sales that XYZ Company everyday for each outlet broken down to various categories, like Card, Nets, cash, etc. For the sales data, we have the data between December 2015 to November 2017.

Since the sales data is relatively clean and ready to be analysed, there is very little to do. Our group only prepared the data by adding another calculated column called “revenue”, which is the sum of column “nett_sales” and “service”, and we concatenated all 4 excel files into one single file. Using Python scripts, we standardised the column names and compiled them into a giant CSV data file.

PLU Data Preparation Process

Daily PLU refers to the number of patrons that each outlet has daily, in various categories (Adult, Child, Student, Tourist, Senior and FOC Pax) There were several issues with the data. Firstly, all the days are in the same row, which makes it hard to analyse the data. In addition, there is a column “Dept_Type2” in the sample data which is irrelevant to us, for example “Soup Base”. According to our sponsor, we are only interested in 6 categories (Adult, Student, Senior, Tourist, Child and FOC PAX). There are also many different rows of the same category due to the irrelevant description. For example, an adults from an outlet can have different descriptions, such as “Wkend Adult Dinner Buffet” or ‘Wkday Adult Dinner Buffet”, since this is irrelevant to us in the analysis, we would be grouping all the categories into one row for each outlet. After, cleaning all the data issues, we concatenate the various Daily PLU data into one file to make it easier to analyse the daily patrons.

Tennet DailyPLU Cleaning diagram.png
]