Difference between revisions of "ANLY482 AY2016-17 T2 Group19"

From Analytics Practicum
Jump to navigation Jump to search
Line 20: Line 20:
 
! style="border-style: none; border-width: 0 1px 1px 0; border-left:2px solid #a4a4a6; background-color:#ffffff"|  
 
! style="border-style: none; border-width: 0 1px 1px 0; border-left:2px solid #a4a4a6; background-color:#ffffff"|  
 
[[File:Protege_Methods.svg|40px|link= ANLY482_AY2016-17_T2_Group19_Methodology ]]  
 
[[File:Protege_Methods.svg|40px|link= ANLY482_AY2016-17_T2_Group19_Methodology ]]  
[[ANLY482_AY2016-17_T2_Group19_Methodology|<font color="#000000"><b>METHODOLOGY</b></font>]]
+
[[ANLY482_AY2016-17_T2_Group19_Methodology|<font color="#000000"><b>METHODOLOGY & ANALYSIS</b></font>]]
 
 
! style="border-style: none; border-width: 0 1px 1px 0; border-left:2px solid #a4a4a6; background-color:#ffffff"|
 
[[File:Protege_Analysis.svg|40px|link= ANLY482_AY2016-17_T2_Group19_Analysis ]] &nbsp;
 
[[ANLY482_AY2016-17_T2_Group19_Analysis| <font color="#000000"><b>ANALYSIS</b></font>]]
 
  
 
! style="border-style: none; border-width: 0 1px 1px 0;  border-left:2px solid #a4a4a6; background-color:#ffffff"|  
 
! style="border-style: none; border-width: 0 1px 1px 0;  border-left:2px solid #a4a4a6; background-color:#ffffff"|  
Line 32: Line 28:
 
! style="border-style: none; border-width: 0 1px 1px 0; border-left:2px solid #a4a4a6; background-color:#ffffff"|  
 
! style="border-style: none; border-width: 0 1px 1px 0; border-left:2px solid #a4a4a6; background-color:#ffffff"|  
 
[[File:Protege_poster.svg|40px|link= ANLY482_AY2016-17_T2_Group19_Poster ]] &nbsp;
 
[[File:Protege_poster.svg|40px|link= ANLY482_AY2016-17_T2_Group19_Poster ]] &nbsp;
[[ANLY482_AY2016-17_T2_Group19_Poster| <font color="#000000"><b>POSTER</b></font>]]
+
[[ANLY482_AY2016-17_T2_Group19_Documentation| <font color="#000000"><b>DOCUMENTATION</b></font>]]
  
 +
! style="border-style: none; border-width: 0 1px 1px 0; border-left:2px solid #a4a4a6; background-color:#ffffff"|
 +
&nbsp;
 +
[[ANLY482_AY2016-17_Term_2| <font color="#000000"><b>BACK TO COURSE</b></font>]]
 
|}
 
|}
 
</center>
 
</center>

Revision as of 15:06, 27 February 2017



Protegelogo-01.svg

Protege overview.svg   OVERVIEW

Protege data.svg   DATA

Protege Methods.svg   METHODOLOGY & ANALYSIS

Protegemaster-03.svg   FINDINGS

Protege poster.svg   DOCUMENTATION

  BACK TO COURSE

Overview


Members

Protegeteam.png

Project Background

Company Z is a medium-sized pharmaceutical product distributor and wholesaler in Singapore who caters to various healthcare institutes and clinics. Effective management of the supply chain and sales strategies is particularly important for Company Z as it deals primarily with large volume and high-value products at a rapid pace. Hence, even the smallest miscalculation in strategic management would result in significant losses. That said, there is huge potential for insights from the wealth of information that can be found in the sales data.

Motivation & Objective

Insights generated with contextual knowledge reinforced by managerial experience and the understanding of the industry/business would ensure tangible positive impacts. While supply chain management is an area with great potential for the application of big data analytics, few firms have fully embraced it in the region. As analytics is increasingly adopted by organisations, it is our aim to apply big data analytics to an established pharmaceutical organisation’s wholesaling and distribution practices, thereby observing the benefits gained and learning more about the challenges faced in maintaining an effective and efficient supply chain. The objective of this project is to create value through the use of Sales data analytics to improve operational efficiency, reduce unnecessary losses and ultimately enhance profitability.

Progress Dashboard

Status: Preparing for interim presentation

Timeline with Process Flow

Current Week: 8

Ongoing Tasks: Further Research of Industry Practices and Trends, Dashboard Planning & Development