Lesson06

From Geospatial Analytics and Applications
Revision as of 16:16, 6 February 2019 by Tskam (talk | contribs)
Jump to navigation Jump to search

Claraview.png IS415 GeoSpatial Analytics and Applications

About

Weekly Session

Take-home Exercises

Geospatial Analytics Project

Course Resources

 


Geographical Segmentation with Spatially Constrained Cluster Analysis

Content

  • Basic concepts of geographic segmentation
  • Conventional cluster analysis techniques
  • Approaches for clustering geographically referenced data
    • Hierarchical clustering with spatial constraints
    • Minimum spanning trees
    • Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)


References

Methods

Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811.

Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822.

Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.

Applications

R Packages

AMOEBA: A Multidirectional Optimum Ecotope-Based Algorithm [1]

ClustGeo: Hierarchical Clustering with Spatial Constraints [2] and Introduction to Clustgeo [3]

skater: A function from spdep package that implements a SKATER procedure for spatial clustering analysis.[4]

spatialcluster: An R package for spatially-constrained clustering using either distance or covariance matrices. [5]


Lesson competencies

Technical References

Application References