Difference between revisions of "Lesson06"
Line 49: | Line 49: | ||
* Read | * Read | ||
− | Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811. | + | Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” ''International Journal of Geographical Information Science'' 20: 797–811. |
− | Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822. | + | Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” ''Computational Statistics''. 33: 1799-1822. |
Revision as of 09:41, 10 February 2019
|
|
|
|
|
Geographical Segmentation with Spatially Constrained Cluster Analysis
Contents
Content
- Basic concepts of geographic segmentation
- Conventional cluster analysis techniques
- Approaches for clustering geographically referenced data
- Hierarchical clustering with spatial constraints
- Minimum spanning trees
- Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)
Must do
- Complete:
- Chapter 2: Hierarchical clustering of Unsupervised Learning in DataCamp.
- View
- Lecture on “Spatially Constrained Clusters” by Luc Anselin (link to 1hr and 20mins video).
- Read
Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811.
Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822.
In-Class Exercise
- Hands-on Exercise 5. The handout and data sets are available at course eLearn..
References
Methods
Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.
Applications
R Packages
AMOEBA: A Multidirectional Optimum Ecotope-Based Algorithm [1]
ClustGeo: Hierarchical Clustering with Spatial Constraints [2] and Introduction to Clustgeo [3]
skater: A function from spdep package that implements a SKATER procedure for spatial clustering analysis.[4]
spatialcluster: An R package for spatially-constrained clustering using either distance or covariance matrices. [5]