Difference between revisions of "Lesson06"

From Geospatial Analytics and Applications
Jump to navigation Jump to search
Line 38: Line 38:
 
** Minimum spanning trees
 
** Minimum spanning trees
 
** Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)
 
** Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)
 +
 +
 +
=Must do=
 +
 +
* View
 +
** Lecture on “[https://www.youtube.com/watch?v=LCf_7o7teuw&list=PLzREt6r1Nenlu-MBaxCRL2KZNk62n7o1g&index=8 Spatially Constrained Clusters]” by Luc Anselin (link to 1hr and 20mins video).
 +
 +
* Read
 +
** Anselin, L. (1995). "Local indicators of spatial association – LISA". ''Geographical Analysis'', 27(4): 93-115.
 +
** Brunsdon, C. & Comber, L. (2015) '''An Introduction to R for Spatial Analysis & Mapping''', SAGE Publication Ltd., London. Chapter 8: 8.1-8.6.
 +
** Bivand, R.S., Pebesma, E. & Gómez-Rubio, V. (2013) '''Applied Spatial Data Analysis with R''', 2nd Edition. Springer, New York. Chapter 9: Modeling Areal Data, Section 9.3.2 Local Tests.  This is an e-book. 
 +
 +
*Complete Hands-on Exercise 5. The handout and data sets are available at course eLearn.
 +
  
  

Revision as of 09:18, 10 February 2019

Claraview.png IS415 GeoSpatial Analytics and Applications

About

Weekly Session

Take-home Exercises

Geospatial Analytics Project

Course Resources

 


Geographical Segmentation with Spatially Constrained Cluster Analysis

Content

  • Basic concepts of geographic segmentation
  • Conventional cluster analysis techniques
  • Approaches for clustering geographically referenced data
    • Hierarchical clustering with spatial constraints
    • Minimum spanning trees
    • Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)


Must do

  • Read
    • Anselin, L. (1995). "Local indicators of spatial association – LISA". Geographical Analysis, 27(4): 93-115.
    • Brunsdon, C. & Comber, L. (2015) An Introduction to R for Spatial Analysis & Mapping, SAGE Publication Ltd., London. Chapter 8: 8.1-8.6.
    • Bivand, R.S., Pebesma, E. & Gómez-Rubio, V. (2013) Applied Spatial Data Analysis with R, 2nd Edition. Springer, New York. Chapter 9: Modeling Areal Data, Section 9.3.2 Local Tests. This is an e-book.
  • Complete Hands-on Exercise 5. The handout and data sets are available at course eLearn.


References

Methods

Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811.

Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822.

Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.

Applications

R Packages

AMOEBA: A Multidirectional Optimum Ecotope-Based Algorithm [1]

ClustGeo: Hierarchical Clustering with Spatial Constraints [2] and Introduction to Clustgeo [3]

skater: A function from spdep package that implements a SKATER procedure for spatial clustering analysis.[4]

spatialcluster: An R package for spatially-constrained clustering using either distance or covariance matrices. [5]


Lesson competencies

Technical References

Application References