Difference between revisions of "Lesson06"

From Geospatial Analytics and Applications
Jump to navigation Jump to search
Line 28: Line 28:
 
|}
 
|}
 
<br/>
 
<br/>
 +
 +
<font size="6">'''Geographical Segmentation with Spatially Constrained Cluster Analysis'''</font>
  
 
=Content=
 
=Content=
* Basic concepts of Principal Component Analysis
+
* Basic concepts of geographic segmentation
* Standard Nonspatial PCA on Spatial Data
+
* Conventional cluster analysis techniques
* Locally Weighted PCA
+
* Approaches for clustering geographically referenced data
* Geographically Weighted PCA
+
** Hierarchical clustering with spatial constraints
 +
** Minimum spanning trees
 +
** Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)
  
  
Line 40: Line 44:
 
==Methods==
 
==Methods==
  
Urška Demšar, Paul Harris, Chris Brunsdon, A. Stewart Fotheringham & Sean McLoone (2012): “Principal Component Analysis on Spatial Data: An Overview”. Annals of the Association of American Geographers, 103:1, 106-128.
+
Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811.
  
Harris, P., Brunsdon, C., and Charlton, M. (2011) “Geographically weighted principal component analysis”. International Journal of Geographical Information Science, 25(10): 1717-1736.
+
Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822.
  
 +
Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.
  
 
==Applications==
 
==Applications==
  
Harris, P., et. al. (2015) “Enhancements to a geographically weighted principal components analysis in the context of an application to an environmental data set”. ''Geographical Analysis'', 47: 146-172.
 
  
Comber, A., Harris, P., and Tsutsumida, N. (2016) “Improving land cover classification using texture variables outputted from a geographically weighted principal components analysis”. ''ISPRS Journal of Photogrammetry and Remote Sensing'', 119: 347-360.
+
=R Packages=
  
Tsutsumida, N., Harris, P., Comber, A. (2017) “The application of a geographically weighted principal components analysis for exploring 23 years of goat population change across Mongolia”. ''Annals of the Association of American Geographers'', 107(5): 1060-1074.
+
'''AMOEBA''': A Multidirectional Optimum Ecotope-Based Algorithm [https://cran.r-project.org/web/packages/AMOEBA/index.html]
  
Li, Z., Cheng, J. & Wu, Q. (2016)”Analyzing regional economic development patterns in a fast developing province of China through geographically weighted principal component analysis”, ''Letters in Spatial and Resource Sciences'', 9(3), 233-245.
+
'''ClustGeo''': Hierarchical Clustering with Spatial Constraints [https://cran.r-project.org/web/packages/ClustGeo/index.html] and Introduction to Clustgeo [https://cran.r-project.org/web/packages/ClustGeo/vignettes/intro_ClustGeo.html]
  
Kallio, M., Guillaume, J.H.A., Kummu, M. et al. (2018) “Spatial Variation in Seasonal Water Poverty Index for Laos: An Application of Geographically Weighted Principal Component Analysis”, ''Social Indicators Research'', 140(3), 1131–1157.
+
'''skater''': A function from spdep package that implements a SKATER procedure for spatial clustering analysis.[https://www.rdocumentation.org/packages/spdep/versions/0.8-1/topics/skater]
  
 +
'''spatialcluster''': An R package for spatially-constrained clustering using either distance or covariance matrices. [https://github.com/mpadge/spatialcluster]
  
=The R Packages=
 
Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models. Journal of Statistical Software 63(17): 1-50.
 
  
 +
=Lesson competencies=
  
=Lesson competencies=
+
=Technical References=
 +
 
 +
 
 +
=Application References=

Revision as of 16:16, 6 February 2019

Claraview.png IS415 GeoSpatial Analytics and Applications

About

Weekly Session

Take-home Exercises

Geospatial Analytics Project

Course Resources

 


Geographical Segmentation with Spatially Constrained Cluster Analysis

Content

  • Basic concepts of geographic segmentation
  • Conventional cluster analysis techniques
  • Approaches for clustering geographically referenced data
    • Hierarchical clustering with spatial constraints
    • Minimum spanning trees
    • Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)


References

Methods

Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811.

Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822.

Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.

Applications

R Packages

AMOEBA: A Multidirectional Optimum Ecotope-Based Algorithm [1]

ClustGeo: Hierarchical Clustering with Spatial Constraints [2] and Introduction to Clustgeo [3]

skater: A function from spdep package that implements a SKATER procedure for spatial clustering analysis.[4]

spatialcluster: An R package for spatially-constrained clustering using either distance or covariance matrices. [5]


Lesson competencies

Technical References

Application References