Difference between revisions of "Lesson06"

From Geospatial Analytics and Applications
Jump to navigation Jump to search
 
(8 intermediate revisions by the same user not shown)
Line 41: Line 41:
  
 
=Must do=
 
=Must do=
 +
 +
* Complete:
 +
**  Chapter 2: Hierarchical clustering of Unsupervised Learning in DataCamp.
  
 
* View
 
* View
Line 46: Line 49:
  
 
* Read
 
* Read
** Anselin, L. (1995). "Local indicators of spatial association – LISA". ''Geographical Analysis'', 27(4): 93-115.  
+
Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.''International Journal of Geographical Information Science'' 20: 797–811.
** Brunsdon, C. & Comber, L. (2015) '''An Introduction to R for Spatial Analysis & Mapping''', SAGE Publication Ltd., London. Chapter 8: 8.1-8.6.
 
** Bivand, R.S., Pebesma, E. & Gómez-Rubio, V. (2013) '''Applied Spatial Data Analysis with R''', 2nd Edition. Springer, New York. Chapter 9: Modeling Areal Data, Section 9.3.2 Local Tests.  This is an e-book. 
 
 
 
*Complete Hands-on Exercise 5. The handout and data sets are available at course eLearn.
 
 
 
 
 
 
 
=References=
 
 
 
==Methods==
 
  
Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811.
+
Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” ''Computational Statistics''. 33: 1799-1822.
  
Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822.
 
  
Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.
+
=In-Class Exercise=
  
==Applications==
+
* Hands-on Exercise 6. The handout and data sets are available at course eLearn.
  
  
Line 78: Line 70:
  
  
=Lesson competencies=
+
=References=
 +
 
 +
==Methods==
 +
 
 +
Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.
  
=Technical References=
+
==Applications==
  
 +
Rovan, J. and Sambt, J. (2003) “Socio-economic Differences Among Slovenian Municipalities: A Cluster Analysis Approach”, ''Developments in Applied Statistics'', pp. 265-278. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.4636&rep=rep1&type=pdf]
 +
 +
Demeter, T.  and Bratucu, G. (2013) “Statistical Analysis Of The EU Countries from A Touristic Point of View”, ''Bulletin of the Transilvania University of Braşov'', 6(55): 121-130. [https://search-proquest-com.libproxy.smu.edu.sg/docview/1510289237?rfr_id=info%3Axri%2Fsid%3Aprimo]
  
=Application References=
+
Brown, N.S. & Watson, P. (2012) “What can a comprehensive plan really tell us about a region?: A cluster analysis of county comprehensive plans in Idaho”, ''Western Economics Forum''. pp.22-37. [https://ageconsearch.umn.edu/record/176591/files/WEFFall2012v11n2_Brown.pdf]

Latest revision as of 22:20, 14 February 2019

Claraview.png IS415 GeoSpatial Analytics and Applications

About

Weekly Session

Take-home Exercises

Geospatial Analytics Project

Course Resources

 


Geographical Segmentation with Spatially Constrained Cluster Analysis

Content

  • Basic concepts of geographic segmentation
  • Conventional cluster analysis techniques
  • Approaches for clustering geographically referenced data
    • Hierarchical clustering with spatial constraints
    • Minimum spanning trees
    • Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)


Must do

  • Complete:
    • Chapter 2: Hierarchical clustering of Unsupervised Learning in DataCamp.
  • Read

Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811.

Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822.


In-Class Exercise

  • Hands-on Exercise 6. The handout and data sets are available at course eLearn.


R Packages

AMOEBA: A Multidirectional Optimum Ecotope-Based Algorithm [1]

ClustGeo: Hierarchical Clustering with Spatial Constraints [2] and Introduction to Clustgeo [3]

skater: A function from spdep package that implements a SKATER procedure for spatial clustering analysis.[4]

spatialcluster: An R package for spatially-constrained clustering using either distance or covariance matrices. [5]


References

Methods

Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.

Applications

Rovan, J. and Sambt, J. (2003) “Socio-economic Differences Among Slovenian Municipalities: A Cluster Analysis Approach”, Developments in Applied Statistics, pp. 265-278. [6]

Demeter, T. and Bratucu, G. (2013) “Statistical Analysis Of The EU Countries from A Touristic Point of View”, Bulletin of the Transilvania University of Braşov, 6(55): 121-130. [7]

Brown, N.S. & Watson, P. (2012) “What can a comprehensive plan really tell us about a region?: A cluster analysis of county comprehensive plans in Idaho”, Western Economics Forum. pp.22-37. [8]