Difference between revisions of "1718t1is428T2"
(4 intermediate revisions by one other user not shown) | |||
Line 16: | Line 16: | ||
<p></p><br/> | <p></p><br/> | ||
<div style="background: #347473; padding: 15px; font-weight: bold; line-height: 0.3em; text-indent: 15px;letter-spacing:-0.08em;font-size:20px"><font color=#fbfcfd face="Century Gothic">PROBLEM & MOTIVATION</font></div> | <div style="background: #347473; padding: 15px; font-weight: bold; line-height: 0.3em; text-indent: 15px;letter-spacing:-0.08em;font-size:20px"><font color=#fbfcfd face="Century Gothic">PROBLEM & MOTIVATION</font></div> | ||
− | + | With housing prices being a hot topic that most undergraduates are talking about as we approach that final period called graduation, don't you wish that there was a way for us to get a better picture of the housing market so that we can make our big decision on where we are going to live from now on? Thus, we sought out to look for a dataset which would be able to provide us with the required information we needed to come up with useful visualizations. Unfortunately, most datasets are incomplete or not useful in providing us with any insight unless a good amount of data cleaning and wrangling is done. For example, transaction data which only gives you the block number and road name with no postal code. How is that useful? Therefore, one of our primary goals is to come up with a visualization which would provide users with useful information about the resale market in Singapore and help people gain access to a better data set than the ones currently out there. | |
− | + | In terms of what visualizations we would be going for, we felt that it would be interesting to look into the historical flat data so that we can see which flats in Singapore would be the most value for money so that we can actually get a home which is worth its investment. We also felt that it would be fun to explore trends in the resale flat prices and see what factors really affect the prices of HDBs and see how much of a premium people attach to amenities such as proximity to public transport, schools and etc... | |
− | |||
− | |||
<br/><div style="background: #347473; padding: 15px; font-weight: bold; line-height: 0.3em; text-indent: 15px;letter-spacing:-0.08em;font-size:20px"><font color=#fbfcfd face="Century Gothic">OBJECTIVES</font></div> | <br/><div style="background: #347473; padding: 15px; font-weight: bold; line-height: 0.3em; text-indent: 15px;letter-spacing:-0.08em;font-size:20px"><font color=#fbfcfd face="Century Gothic">OBJECTIVES</font></div> | ||
Line 135: | Line 133: | ||
! style="font-weight: bold;background: #56C0BE;color:#fbfcfd;" | How Analyst Can Conduct Analysis | ! style="font-weight: bold;background: #56C0BE;color:#fbfcfd;" | How Analyst Can Conduct Analysis | ||
|- | |- | ||
− | | [[File:HSH | + | | [[File:HSH Home.png|600px|center]] |
|| | || | ||
# Introduce analysts to the topic of HDB Resale Price and the objectives of the visualization project | # Introduce analysts to the topic of HDB Resale Price and the objectives of the visualization project | ||
# Upon clicking "Find your Dream Home", analysts will then begin their process of exploration | # Upon clicking "Find your Dream Home", analysts will then begin their process of exploration | ||
|- | |- | ||
− | | [[File:HSH | + | | [[File:HSH Insight1.png|600px|center]] |
|| | || | ||
# When a user enters our app, we will show them a brief history of HDB followed by the problem that most young people are facing with regards to understanding the HDB situation. | # When a user enters our app, we will show them a brief history of HDB followed by the problem that most young people are facing with regards to understanding the HDB situation. | ||
− | # The | + | # The 2 screens of different insights we are trying to show will be displayed as 2 clickable buttons so that it is easy for a user to know what exactly he wants to look for at a glance. |
+ | # The dual axis bar-line chart will indicate the number of units sold vs the HDB price index to show the performing over the years. | ||
+ | # The scatter plot groups attacks based on 3 main categories - Planning Area, HDB resale price, Life left on lease. Firstly, by grouping based on planning area, it shows the the different HDB of how many years they left on lease. The size of the circle indicate the resale price of the HDB | ||
|- | |- | ||
− | | [[File:HSH | + | | [[File:HSH Insight2.png|600px|center]] |
|| | || | ||
# In the next phase of the exploration, we | # In the next phase of the exploration, we | ||
− | # The radar chart shows | + | # The radar chart shows 5 different governance indicators that defines how well a HDB is price with several other indicators. The closer the area is to the center of the chart, the less well the indicators is. Upon mouse-over of each area, one can also retrieve the exact values of each governance indicator. |
− | # | + | # Using the map of Singapore as a filter condition, analysts can selected their choice of HDB to see if its near any bus stop, MRT, schools. |
− | + | # By looking at both charts, the analyst will then be able to compare and establish possible linkages between the different indicators for HDB over the years. As such, these 2 charts are placed side by side to assist the analyst in their data exploration. | |
− | # By looking at both charts, the analyst will then be able to compare and establish possible linkages between | ||
− | |||
|} | |} | ||
Line 185: | Line 183: | ||
<br/><div style="background: #347473; padding: 15px; font-weight: bold; line-height: 0.3em; text-indent: 15px;letter-spacing:-0.08em;font-size:20px"><font color=#fbfcfd face="Century Gothic">TOOLS/TECHNOLOGIES</font></div> | <br/><div style="background: #347473; padding: 15px; font-weight: bold; line-height: 0.3em; text-indent: 15px;letter-spacing:-0.08em;font-size:20px"><font color=#fbfcfd face="Century Gothic">TOOLS/TECHNOLOGIES</font></div> | ||
<p>The following are some of the tools/technologies that we will be utilizing during the project:</p> | <p>The following are some of the tools/technologies that we will be utilizing during the project:</p> | ||
+ | * Excel | ||
* D3.js | * D3.js | ||
* Proj4.js | * Proj4.js |
Latest revision as of 18:54, 6 November 2017
With housing prices being a hot topic that most undergraduates are talking about as we approach that final period called graduation, don't you wish that there was a way for us to get a better picture of the housing market so that we can make our big decision on where we are going to live from now on? Thus, we sought out to look for a dataset which would be able to provide us with the required information we needed to come up with useful visualizations. Unfortunately, most datasets are incomplete or not useful in providing us with any insight unless a good amount of data cleaning and wrangling is done. For example, transaction data which only gives you the block number and road name with no postal code. How is that useful? Therefore, one of our primary goals is to come up with a visualization which would provide users with useful information about the resale market in Singapore and help people gain access to a better data set than the ones currently out there.
In terms of what visualizations we would be going for, we felt that it would be interesting to look into the historical flat data so that we can see which flats in Singapore would be the most value for money so that we can actually get a home which is worth its investment. We also felt that it would be fun to explore trends in the resale flat prices and see what factors really affect the prices of HDBs and see how much of a premium people attach to amenities such as proximity to public transport, schools and etc...
In this project, we are interested to create a visualisation that helps users perform the following:
- View the trend in the resale prices over time with respect to major events that happened in the year (Example: 1993 Change in Pricing Model,1997 Recession
- Identify which areas are more expensive and possible reasons for the high value (Proximity to public transport, Schools, Shopping Malls, Park)
- To find out if getting a specific HDB is a good investment based on the number of year left on the lease and which locations may potentially be more profitable based on the age of the HDB.
By using our visualisation, we will be able to give users a better idea of the pricing situation of the resale HDBs so that people can make better decisions in the HDB which they want to choose to call their home. Such as when is the best time to buy as HDB; where are the most profitable / cheapest locations; whether a HDB is expensive
In our analysis, we will only be using data within the year of 1990 - 2017. The rationale for the range of data selected is as follows:
The dataset for analysis will be retrieved from multiple databases, as elaborated below:
Dataset/Source | Data Attributes | Rationale Of Usage |
---|---|---|
(https://data.gov.sg/dataset/resale-flat-prices?resource_id=83b2fc37-ce8c-4df4-968b-370fd818138b ) (https://data.gov.sg/dataset/resale-flat-prices?resource_id=8c00bf08-9124-479e-aeca-7cc411d884c4 ) (https://data.gov.sg/dataset/resale-flat-prices?resource_id=adbbddd3-30e2-445f-a123-29bee150a6fe ) |
|
|
(https://www.mytransport.sg/content/mytransport/home/dataMall.html#) |
|
|
(https://www.mytransport.sg/content/mytransport/home/dataMall.html#) |
|
|
(https://data.gov.sg/dataset/school-directory-and-information) |
|
|
There are many charts and visualisations available which illustrates the various trends of house prices and index. We have selected a few of these to study and learn before we begin developing our own visualizations.
Related Works | What We Can Learn |
---|---|
|
|
| |
|
Proposed Layout | How Analyst Can Conduct Analysis |
---|---|
| |
| |
|
The following are some of the key technical challenges that we may face throughout the course of the project:
Key Technical Challenges | How We Propose To Resolve |
---|---|
| |
| |
| |
|
The following shows our project timeline for the completion of this project:
The following are some of the tools/technologies that we will be utilizing during the project:
- Excel
- D3.js
- Proj4.js
- Google Maps Distance Matrix API
- Google Search API
- Github
- Node.js
- Angular.js
- DrWealth’s infographic (https://www.drwealth.com/singapore-property-prices-along-mrt-lines/)
- Data Gov Database (https://data.gov.sg)
- D3.js (https://d3js.org/)
- Examples By Mike Bostock (https://bost.ocks.org/mike/example/)
- Housing Development Board (http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/resale/resale-statistics)
The following are some of the proposed storyboard that we designed during our brainstorming sessions:
Our idea was to provide charts which are able to visualise the trends of HDB over the years in Singapore. We decided to split into multiple charts to be able to showcase the information more clearly.
Feel free to comments, suggestions and feedbacks to help us improve our project! (: