Difference between revisions of "Data Preparation Q2 Sumalika"

From Visual Analytics and Applications
Jump to navigation Jump to search
 
Line 11: Line 11:
 
| style="font-family:Century Gothic; font-size:100%; solid #000000; background:#001a66; text-align:center;" width="16.6%" |   
 
| style="font-family:Century Gothic; font-size:100%; solid #000000; background:#001a66; text-align:center;" width="16.6%" |   
 
;  
 
;  
[[Assignment Overview | <font color="#FFFFFF">Assignment Overview</font>]]
+
[[ISSS608 2016-17 T3 Assign SUMALIKA KODUMURU| <font color="#FFFFFF">Assignment Overview</font>]]
  
 
| style="font-family:Century Gothic; font-size:100%; solid #1B338F; background:#001a66; text-align:center;" width="16.6%" |   
 
| style="font-family:Century Gothic; font-size:100%; solid #1B338F; background:#001a66; text-align:center;" width="16.6%" |   

Latest revision as of 12:54, 16 July 2017

ISSS608: Visual Analytics and Applications
VAST CHALLENGE 2017
- SUMALIKA KODUMURU

Assignment Overview

Data Overview

Sensor Performance

Patterns of Chemical Release

Factories Responsible

References & Feedback

 


Go back to Analysis

 


Data Pre-Processing:


Dataset: Sensor Data
Tools & Techniques:
1. JMP
2. Tableau
3. Excel


1. Check for Missing Values in the given data set:
The Sensor data set given by VAST and it consists of no missing values.

2. Check for Duplicate Values:
Since there is no unique identifier, no issue of duplicate values.
The date field has 1 value for each, hence no repetitions in date value.

3. Analyse variable distributions:

Date: Refers to date fields for Months April, August and December

100%


Chemical: Almost equal in number with a maximum count of AGOG-3A and minimum count of Methylosmolene

100%


Monitor: A total of 9 sensors are located around the Factories.

100%


Data Transformation
To identify the correlations between each chemical transform the data using Pivot function in Excel. The data for this plot is transformed as below:
100%