ANLY482 Analytics Practicum

Meeting Minutes

Date:	17/02/2015
Time:	1530h
Venue:	SIS Meeting Room 4.1
Attendees:	Prof KAM Tin Seong CHENG Fu Mei LEONG Wai Sum Lynette SEOW Hui Xin
Absent with Apologies:	-
Minutes Taker:	LEONG Wai Sum

Agenda:

Topic	Exploratory Data Analysis
Content	- Missing data analysis E.g. "inbound_contract_code" Why are there missing data/so many missing values? How many percent constitutes a significantly high amount of missing data? - Need to change workflow to make sure the database is properly filled up Steps should be taken to reduce number of missing values Recommendations: need to fill up gaps for future analytics use Inform the sponsor/management of the individual missing values Transformation and weigh it - Summary statistics for locations fields Can report on e.g. top 5, 10 of "Map Dest Srva" Depends on what is being analysed "Map Origin Srva" vs "Local Revenue" Use bar chart/histogram Use "Sum" function instead of data points Customers who have a lot of variance in transactions, some months with very big variance and some months small - Get total revenue, and get e.g. top 10 customers (monetary) Find consistent customers (similar revenue every month), the proportion of customers whose purchases are straight lines throughout the month/week - The customers whose purchases fluctuate (very high/low in certain months/weeks), variation in purchase - Look at yearly/monthly/weekly - Use "Sum" instead of "Median" in order to observe patterns and see the difference, for e.g. "Local Revenue" and "Billed Weight" - Change field to months - Subsequently use box-plot to show variations and distributions of months,

	see if it is the same or different throughout the month; which customers have higher variation and which are the more stable accounts - Customers - Focus should be on how to identify the different groups of customers Target customers at the end of the day Look at distribution of each customer (account number) For each customer, calculate mean and standard deviation (SD); those with high SD are those that fluctuate (week/month/year) - Sales Channel Can one customer use more than 1 sales channel? If so, what proportion uses 1,2 or 3 sales channel(s)? Break down the customers using the number of sales channels they use For each sales channel, how do they perform overtime? E.g. Sales channel A is used by 50% of the customers However, average revenue per customer may not be that way; should also see in terms of proportion - Compare absolute total revenue, average revenue per transaction, and also revenue per customer (total revenue over number of customers to get an average) - Understand segments better: number of sales channel(s) used, proportion of the different numbers of sales channels used Monetary \rightarrow Pareto (80:20) rule for revenue vs account number (Run with account managers in company is dangerous and risky as they may bring away customers along with them if they join competitor companies) - How many \%, aggregate out by customers, to segregate customers who consistently give high/low revenue - Show statistics for revenue, accompanied with distribution, e.g. $25^{\text {th }}, 50^{\text {th }}$, $75^{\text {th }}$ percentiles - Show in bar graph, not line Put lines to show where is $25^{\text {th }}, 50^{\text {th }}, 75^{\text {th }}$ percentiles Look at total, not mean Look at total first, then later compare mean and median to get an idea of the distribution (e.g. skewness) - Check accounts with 0 revenue but yet having transactions (Summary > Frequency - N Rows) - To single out - May be due to bundle sales: package items together for discounts (may be e.g. promotions, free trial), utilise 2-3 times then do not use the service again already - to check

Topic	Cluster Analysis
Content	RFM model $\circ \quad$ RFM binning

	- Start with the conventional model of RFM as the variables - Derive variables \rightarrow RFM index (individually from transaction data) - Come up with indicators (derived variables) to represent R, F and M - Based on variables, how can recency (R) be found? E.g. 1-12 (based on months) - Most recent can be this month, week, or even day - If based on days, most recent is 1 , latest will be 365 (or 366 in a leap year); for no purchase at all throughout the year, it should not be 0 , need to put 999 or something bigger than 365/366 (e.g. 380, 400) as no purchase should logically be assigned the biggest number - As for frequency (F), can take row count from transaction data - Monetary (M) is traditionally looking at the total sum; so M is the total revenue per customer ("Account") - Weakness of scoring method of RFM model presented in the readings: subjective approach, so not to follow - Instead, use clustering (analytics technique) to do customer segmentation: put R, F, M into the clustering process and examine the results - Need to transform and apply standardisation (e.g. normalisation) - However, the consistency of contribution may be an important factor as well - Should we use RFM like what other businesses are doing? - It does not tell about the customers with fluctuating purchases - See variance, may be able to add in additional insights - Will it be a better model, more refined, better targeting? Or will it just make the model more confusing without adding much value? - Other factors/variables besides RFM - Insights can be derived from EDA - High variance in transactions - Consistency in orders

Follow-up Actions:

S/N	Task	Person Assigned	Due Date
1	EDA: Customer field	Fu Mei	$21 / 02 / 2015$,
		Wai Sum	$21 / 02 / 2015$,
2	EDA: Channel, Product, Industry fields		1159 h
3	EDA: Locations (Owner, Origin, Destination fields)	Lynette	$21 / 02 / 2015$,
			1159 h

