

Supervisor Meeting #8

Drafted by: Liam Pang (29/03/2018) Edited and Vetted by: Ong Geok Ting (29/03/2018)

Date	<u>Time</u>	<u>Venue</u>
29/03/2018	1300Hrs – 1400Hrs	SIS MR 4-06

Participants: Prof. Kam, Liam Pang, Ong Geok Ting, Tan Rui Feng **Agenda:**

- 1. To clarify issues on data transformation, selection and interpretation
- 2. <u>To understand LCA better</u>

Meeting Item 1: Data transformation, selection and interpretation					
S/N	Issue	Action	By	Due	
1	Prof. Kam reviewed the team's	Include the performance	All	1/4/18	
	project and provided some input.	output as a clustering			
		variable.			
	- Learn the differences and				
	similarities between LCA	To conduct data			
	and K-Means more	transformation using			
	- The team should not be	different techniques.			
	using two different sets of	Compare results to find			
	data to conduct the	the most optimal.			
	clustering analysis				
	- To separate the				
	observations between				
	those who are active and				
	inactive. The Inactives are				
	influencing the				
	interpretation of the data.				
	Another suggestion would				
	be to separate them and				
	build two different				
	models. Do a statistical				
	test, parametric test, mean				
	test to identify if active				
	and inactive are identical.				

	~		
-	Paid or non-paid should		
	not be conveniently left		
	out for K-Means while		
	included for LCA.		
-	To include performance		
	variable of customer		
	enquiries for clustering as		
	it might indicate the		
	relative success of each		
	group. The business		
	justification to include		
	them would probably be		
	that those measures are the		
	customers of the		
	customers of REO.		
	Therefore, it might be		
	useful to investigate		
	further.		
-	The team only have 4		
	variables, so a multivariate		
	analysis to identify		
	correlation should be		
	done. Currently, total		
	sessions and organic is		
	highly correlated.		
	Therefore, both variables		
	should not be included in		
	the clustering. Decide to		
	drop either sessions or		
	organics but based on the		
	distribution, it might be		
	smarter to drop organic		
	due to the higher		
	proportions of 0.		
-	In cluster analysis,		
	especially K-means, it is		
	very sensitive to different		
	data range. For example,		
	sessions and cobroke have		
	a huge difference in their		
	variance. This is		
	something need to be		
	resolved. This will cause		
1			1

	your centroid to be pulled			
	away. Identify if this data			
	range will affect your			
	cluster analysis. One way			
	to do so is to build 2			
	models, 1 with			
	standardisation and			
	another without.			
	- As K-Means is a method			
	which is sensitive to			
	skewness, a			
	transformation should be			
	done. Identify the pattern			
	of data distribution to			
	determine the best			
	transformation technique.			
	However, JMP has a			
	global transformation			
	method – the Johnson			
	Transformation Method.			
	- Attempt a few			
	transformation methods			
	such as Johnson, Log 10			
	or others recommended by			
	JMP. Use these sets of			
	data and see which			
	produces the most			
	satisfactory set of clusters.			
	5			
	- Use the 2 loglikelihood or AIC to assess. The smaller			
	AICc is the recommended			
	method.	Even online and weith and in	A 11	1/4/10
2	- Use the outlier clean up	Experiment with various	All	1/4/18
	function to remove them.	clustering techniques and		
	Other methods to deal	removal of outlier to		
	with outliers would be	determine if there exists a		
	normal mixtures and	most optimal technique for		
	robust normal mixtures. It	the data.		
	will identify them and			
	start the seeds without the			
	influence from the outliers			
	before it starts converging			

	· 1 ·1 ·* 1]
	towards the optimal		
	answer.		
	- One challenge is to define		
	the K upfront using K-		
	means. JMP allow you to		
	help you define a range,		
	such as CCC – which		
	range give you the optimal		
	configuration. The largest		
	CCC value is the most		
	optimal value. The team		
	had issues previously		
	because the optimal CCC		
	value was in the negative,		
	which means that the		
	clustering was not		
	converging well. CCC can		
	be influenced by outliers,		
	so if it does not converge		
	properly, use other		
	methods such as normal		
	mixtures. If optimal CCC		
	is at the upper/lower limit		
	of the range, re-run the		
	clustering with a greater		
	range as the optimal CCC		
	might sit outside of the		
	input range.		
	input runge.		
3	To evaluate the cluster results:	_	 _
	- Check if they are evenly		
	distributed		
	- Check for odd		
	membership, such as		
	really low counts.		
	- Look at the cluster mean		
	and the centroids as these		
	are the summary statistics for the clusters. Do note		
	that the centroid values are		
	pre-transformed. Do not		
	use the transformed data		
	to do analysis in means		

	 and standard deviation as you cannot derive a good interpretation. Analyse using 			
	 visualisation such as biplots to identify overlapping clusters and merge them Save the clustering results and visualise the results using graph viewer with the cluster numbers and distances. The mean will assist with the interpretation of the 			
	 clusters. A parallel coordinate plot would be useful to 			
	visualise the differences between the clusters.			
Meet	ting Item 2: To understand LCA b	etter	<u> </u>	
S/N	Issue	Action	By	Due
1	For latent class clustering, the classes for categorisation must be equal. For example, binning all the variables into quantile. To analyse the results, focus on the frequency of the membership in a sub-class. This is very different as compared to k-means, as you compare the mean and standard deviation.	To implement the suggestions.	Tan Rui Feng	30/3/18