

2803: Supervisor Briefing: Cluster Analysis Review

Date/Time 28 March 2018, 2PM – 3PM

Attendees Arushi, Shubhangi, Tanushree

Sr. No.	Notes	Actors	Follow up Action
1	 Ran RFM Variables and Clusters with Prof. : Frequency Comments: Problem with current Frequency measure→ Average time b/w bookings. We have frequency values like 0. But then that doesn't make sense. Make definition clear first One Way: 3 months/6months/year→ Within that time period, how many times does the customer come? How many times the customer booked/the days since the customer joined the eatigo application. 	Shubhangi	Remember to update the frequency variables

	 For everyone who were there from earlier, total number of bookings/365. If the base is not meaningful, you can consider dividing by one month or 3 months or the period you think meaningful 		
2	Recency: Calculated as last date of year- Max booking date. Variable passed		
3	Monetary: Currently calculating the average number of diners across the bookings. Look at Total Number averaged number of diners	Shubhangi	Revise the monetary values
4	Notes on the Paper: - Remember to define how you've calculated each - And talk about the cut-off q	Shubhangi	Keep in mind
5	Notes on Standardization: - Only use standardization if the data range is very big Our data is not that wide. Therefore, we need to fix skewness not standardization. Therefore we should do transformation. Log Transformation:	Arushi	Figure out the standardization method and complete by next meeting

	When you log, range becomes wider, then you standardize		
6	 Notes on using different data types: We have lots of variables of different types of data, some proportions, some continuous and numeric. Need to know how to deal with it. Prof Comments Option #1: Use RFM Analysis Then Profile. Identify common booking behaviour Option #2: Standardization doesn't always have to be Z-Score Look at the variable that has maximum values And can be scaled up 	All	Decide on which option we would like to go ahead with
7	Using Clustering: K-Means: - Use - Step #2: Based on CCE (statistical method to choose the best number of clusters), decide on the number of clusters.	All	By next meeting have the distributions of variables standardized and transformed ready. Have the initial clustering done

CCE should not be negative.	with parallel plots
Two possibilities of negative:	ready to show prof.
 Lots of outliers: 	In case any
If there's a cluster with only 1	questions email
variable, then it's wrong.	prof with the
It should ideally have equal	doubts.
number in each cluster	
- Data Skewed	
Deciding on important	
variables:	
- Look at cluster mean	
and cluster SD.	
- But since it's	
standardized, it's not	
reliable to use it to	
interpret.	
- Save the cluster.	
- Go back to the main	
table, map out	
distribution of cluster	
inputs and cluster itself.	
- Remove the cluster.	
- Then at the menu on	
top of graphs, find data	
filter, then click cluster.	
- Use that for	
interpretation.	
Interpretation #2:	
- Graph \rightarrow Parallel Plot,	
put all cluster inputs.	
- Click Data Filter,	
Cluster. Then look at	
the parallel plot,	
colored based on	
clusters	
- Uncheck Include and	
show.	

 Question 2. Outlier is important Clustering Technique #2:	
If there are outliers, use Normal Mixtures. If the clusters are equal	
sizes, then use this. Look at BIC and AIC and find the smallest.	
Rerun the iteration just in case and expand the range. Then check the AIC and	
BIC. If the small BIC is in one cluster and small AIC is	
another cluster then compare both the clusters.	