
 SMUSINGAPORE MANAGEMENT UNIVERSITY
 School of
 Information Systems

 ANLY482-Analytics

 ANLY482-Analytics Practicum

 Practicum}

Project Proposal
Koh Ying Ying Trecia
Luqman Haqim Bin Ab Rahman

Table of Contents

Table of Contents

1. Version .. 3
2. Background.. 4
3. Objective... 4
4. Scope ... 4
5. Data Required... 4
6. Deliverables... 5
7. Dependency.. 5
8. Stakeholders... 5
a. Project Supervisor .. 5
9. Schedule... 5
10. Tools Used .. 6
11. Data Preparation ... 6
12. Exploratory Data Analysis for Knowledge Discovery.. 7
a. Commuters Patterns by Date .. 8
b. Commuters Patterns by Hour .. 8
c. Commuters Hour Patterns grouped by Commuter Type .. 9
d. Commuter Patterns by Distance ... 11
e. Commuters Patterns by Time ... 12
f. Commuters Distance Patterns grouped by Commuter Type ... 12
g. Commuters Travel Patterns grouped by Different zones .. 14
i. Boon Lay ... 14
ii. Raffles Place... 15
iii. Orchard... 16
iv. Tampines .. 17
v. Woodlands.. 18
13. References... 19
14. Version

Version	Change Description	Author	Date
1.0	Initial Draft on ALOS	Trecia, Luqman	$24 / 01 / 2015$
2.0	Draft for LTA	Trecia, Luqman	$24 / 02 / 2015$

2. Background

Singapore is a small country, yet it has a complex but comprehensive public transportation network. Consisting of train (known as Mass Rapid Transit, hereinafter known as MRT), bus, light and rapid trains (Light Rail Transport, hereinafter known as LRT), and taxis, the public transport in Singapore employs the hub-and-spoke strategy; busses serve as the means of transportation within a town, and MRT trains are used for long distance travel.

The demand for MRT ridership has significantly increased since 1997 as it served as a cheaper or faster alternative to car or taxi for long distance travel. However, since 2011 to the time of this paper, confidence in the MRT system have dropped as it has been plaque with service breakdowns. Some of these breakdowns can be as short as 45 minutes and some as long as a full day. Most Singaporeans feel that the train breakdown is attributed to the sudden increase of foreign workers in the country and that the MRT infrastructure cannot cope with the sudden increase of ridership, thus leading to the breakdowns.

Calls from the public to improve the MRT infrastructure have been a priority for the MRT operators. It is important that the operators understand the traffic patterns of the MRT ridership to be able to constructively understand and cater or improve the reliability and re-instill confidence in the MRT.

Should the MRT operators cater to the morning peak by increasing the frequency of trains in the morning, or should they increase the train frequency in the evenings when commuters end the day? Should policies be applied across all stations or should each station have different policies?

With the Government's plans to have 6.9 million citizens in Singapore by 2020, we hope to use analytics to be able to understand the travel patterns of the MRT so as to improve the MRT services.

This paper attempts to explore the travel patterns of the MRT ridership in Singapore for the first week of November of 2011. This paper will continue the work done by Roy LEE's Master Thesis and we seek to explore the areas that LEE do not cover in his Master Thesis.

3. Objective

- Business objective: To identify the MRT ridership patterns of the various station to improve the MRT services.
- Technical objective: To use data analytics techniques such like exploratory data analysis (EDA), and statistical methods to study and gain insights from the data to identify patterns that aid business objective. We will then use time series data mining methods to explore the different patterns.

4. Scope

- Perform data cleaning on the data set received to consolidate the important fields that are required for analysis.
- Perform EDA to identify patterns that will help in the study of MRT ridership.
- Use time series data mining to explore the patterns of the MRT ridership.

5. Data Required

For the project, Land Transport Authority (LTA) provides the data sets through LARC research labs. The dataset is a weeks' worth of smart card (EZ-Link) transaction used in Singapore's public transport. The data consist of both bus and also MRT transaction. For this project we will require only MRT transactions.

6. Deliverables

- A detailed report to explain the study and recommendations to improve MRT services
- A detailed description and interpretation of the analysis procedures that has been used in time series data mining.

7. Dependency

Dependency	Description
Data	Data has been retrieved from a database provided by LTA and made available for LARC research initiative. It is however a big dataset.
Technical Skills	No dependencies

8. Stakeholders

a. Project Supervisor

Prof Kam Tin Seong, Associate Professor of Information Systems; Senior Advisor, SIS Programmes in Analytics
b. Project Members
i. Koh Ying Ying Trecia
ii. Luqman Haqim Bin Ab Rahman

c. Project Sponsor

Prof Kam Tin Seong, Faculty Staff of Learning Analytics Research Centre (LARC)
9. Schedule

	Weeks/ Date	Task	Milestone
Midterm	Week 6 09/02/2015	Source and analyse projects available	
	Week 7 16/02/2015	Finalized on project topic Readings related to project Proposal development Data exploration and cleaning EDA Process Draft mid-term report	
	Week 8 23/02/2015	Finalize EDA Process Update mid-term report + power point slides + wiki Decide on tool to use Decide on time series data mining methods	Mid-term Presentation Progress Report + Wiki Due Date: 26 February 2015
	Week 9 $02 / 03 / 2015$	Perform time series data mining methods	
	Week 10 09/03/2015	Perform time series data mining methods with forecasting methods.	

	Week 11 $16 / 03 / 2015$	Analysis \& Reporting of the results from time series data mining Draft final research paper, power point slides	
	Week 12 $23 / 03 / 2015$	Study all research and analysis findings Interpreting and comparing models Record findings and documentation Poster creation Update research paper + wiki	
	Week 13 $30 / 03 / 2015$	Finalized analysis result Finalized Research Paper Finalized wiki	Final Presentation Final Report, Poster, Wiki Due Date: TBC
	Week 14 $06 / 04 / 2015$	Submission of Final Report, Poster	

10. Tools Used

For data preparation, descriptive statistics, we use SAS JMP Pro and SAS Enterprise Guide. We used both tools as we are familiar with SAS Enterprise Guide as the Analytics Foundation course uses SAS Enterprise Guide; therefore we are well versed in the tool. We use SAS JMP Pro as recommended by our project supervisor as a faster alternative. However, as we use both tools interchangeable as fit the task.

For the data-mining portion, we will use SAS Enterprise Miner as the tool for time series data mining.

11. Data Preparation

The dataset provided by LARC is currently from a MySQL database. We extracted the data by taking a database dump. As we are only interested in the MRT transactions, we added a conditional statement to only include the train dataset.

These are the tables we used:

1. Location_mapping. This table contains the human readable name of a station and the date it was commissioned
2. Lta_ride: this contains the time series transaction table that contains the transaction for the first week of November 2011.

Using SAS Enterprise Guide, we performed these data preparation steps:

1. Extracting the hour of entry_time and exit_time. This is to analyse the hour of which ridership is the most.
2. Extracted the minutes from the entry_time and exit_time
a. We then segregated the minutes into quarterly intervals where:
I. $0-15=1$
II. $16-30=2$
III. $31-45=3$
IV. $\quad 46-59=4$
b. We choose a 15 minute interval as it would be less time consuming and meaningful to analyze travel patterns in quarters instead of per minute/second
3. We recoded the entry and exit time of midnight (currently represented as 00 hours) to 24. We then added a calculated field "new_duration" where we take the recoded exit time minus the recoded entry time to get an accurate duration of travel for each transaction. While the original dataset has a travel_time field, we found this to be an unreliable field as per this example from the dataset:
a. Original
i. entry_time: 23:45:00
ii. exit_time: 00:10:00
iii. This results in duration of 1400 minutes. This is incorrect.
b. Corrected
i. entry_time: 23:45:00
ii. exit_time: 24:10:00
iii. This results in duration of 25 minutes. This is correct.
4. We then extracted the day of the week from the entry_date as to understand the travel patterns. These are the extracted information
a. $1^{\text {st }}$ November 2011 is Tuesday (Weekday)
b. $2^{\text {nd }}$ November 2011 is Wednesday (Weekday)
c. $3^{\text {rd }}$ November 2011 is Thursday (Weekday)
d. $4^{\text {th }}$ November 2011 is Friday (Weekday)
e. $5^{\text {th }}$ November 2011 is Saturday (Weekend)
f. $6^{\text {th }}$ November 2011 is Sunday (Weekend)
5. Finally, we joined the Ita_ride table with the location_mapping table to be able to analyze the dataset with the human readable name of the stations.
6. This has resulted in approximately 11 million rows of time series transaction data.

12. Exploratory Data Analysis for Knowledge Discovery

In this phase of the project we attempt knowledge discovery from the provided dataset using a mixture of basic statistics and visualization methods.

a. Commuters Patterns by Date

- entry_date

The entry date patterns suggest that there are more ridership in the weekday compared to the weekend.

- exit_date							
$1>$	/		\triangle Quantiles			\triangle Summary Statistics	
			100.0\%	maximum	$3.39 \mathrm{e}+9$	Mean	$3.3828 \mathrm{e}+9$
			99.5\%		$3.39 \mathrm{e}+9$	Std Dev	3739508
			97.5\%		$3.39 \mathrm{e}+9$	Std Err Mean	1126.2464
			90.0\%		$3.39 \mathrm{e}+9$	Upper 95\% Mean	$3.3828 \mathrm{e}+9$
			75.0\%	quartile	$3.39 \mathrm{e}+9$	Lower 95\% Mean	$3.3828 \mathrm{e}+9$
			50.0\%	median	$3.38 \mathrm{e}+9$	N	11024582
02-01-2011	04-01-2011	06-01-2011	25.0\%	quartile	$3.38 \mathrm{e}+9$	Skewness	0.0952385
			10.0\%		$3.38 \mathrm{e}+9$		
-Normal 2 M			2.5\%		$3.38 \mathrm{e}+9$		

The exit date patterns suggest that there are more ridership in the weekday compared to the weekend.

b. Commuters Patterns by Hour

\checkmark hourEnter				
	${ }^{\triangle}$ Quantiles		\triangle Summary Statistics	
	100.0\% maximum	23	Mean	14.198121
	99.5\%	23	Std Dev	5.0479003
	97.5\%	22	Std Err Mean	0.0015203
, 0	90.0\%	21	Upper 95\%Mean	14.201101
	75.0\% quartile	18	Lower 95\%Mean	14.195142
	50.0\% median	15	N	11024582
	25.0\% quartile	9	Skewness	-0.158553
	10.0\%	7		
- Normal 3 Misture	2.5\%	6		
	0.5\%	5		
	0.0\% minimum	0		

The commuter pattern by hour for entry shows that there is a peak of commuters entering the train stations at 7 and 8 am , plateau after that and a slight increase during mid-day and then the peak is at 6 pm . The first peak suggests the most common time commuters board the train to go to work. The second peak could suggest that the workers board the train to have lunch at a nearby MRT station. The last peak suggests that 6 pm is the time most commuters board the train to go home.

The exit commuter patterns are similar, if not the same as the entry pattern; therefore the analysis is the same. This also suggests that commuters' average travel time do not exceed an hour.
c. Commuters Hour Patterns grouped by Commuter Type

Entry Hour Grouped By Commuter Type	Exit Hour Grouped by Commuter Type	
- Distributions commuter_category=Child	Distributions commuter_category=Child	
NourEnter		
Normal 3 Minture		

- Distributions commuter_category=Adult	- Distributions commuter_category=Adult
The adult hour entry pattern for train commuter has a peak of 8am and 6pm. This two peaks suggest the hour they board the train to go to work and go back home.	The pattern for adult exit is similar for entry with the exception for the exit peak of 8am. This suggests that commuters who board the train at 7am and 8am exit the train at 8am for work.

d. Commuter Patterns by Distance
 - distance_travelled

${ }^{\triangle}$ Quantiles			Δ Summary Statistics	
100.0\%	maximum	46.6	Mean	11.611661
99.5\%		36.6	Std Dev	8.0827817
97.5\%		28.8	Std Err Mean	0.0024343
90.0\%		23.2	Upper 95\% Mean	11.616432
75.0\%	quartile	17.1	Lower 95\% Mean	11.60689
50.0\%	median	10	N	11024582
25.0\%	quartile	4.9	Skewness	0.7458813
10.0\%		2.2		
2.5\%		1		
0.5\%		0.5		
0.0\%	minimum	0		

The commuter pattern by distance shows a right skewed distribution with a mean of 11.6 KM , standard deviation of 8 KM , with a median of 10 KM and a maximum of 46.6 KM . This suggests that most of the commuters use the MRT for short distance. This suggest that most of the commuters that MRT live near to their destination. As the distance increase, the distribution decreases. This suggests that those living further away from the destination MRT station prefer to take other means of transportation such as bus. Busses that travel long distances are called 'Cross country bus services' where they travel between towns. Such services include 960, 170, 190 and 67.

e. Commuters Patterns by Time

- travel_time_min

\triangle Quantiles			\triangle Summary Statistics	
100.0\%	maximum	59	Mean	23.460301
99.5\%		57	Std Dev	13.427014
97.5\%		52	Std Err Mean	0.0040439
90.0\%		43	Upper 95\% Mean	23.468227
75.0\%	quartile	33	Lower 95\% Mean	23.452375
50.0\%	median	22	N	11024582
25.0\%	quartile	12	Skewness	0.4879247
10.0\%		7		
2.5\%		4		
0.5\%		1		
0.0\%	minimum	0		

The commuter travel time is also a right skewed with a mean of 23 minutes, standard deviation of 13 minutes, a median of 22 minutes and a maximum of 59 minutes. This suggests that commuters taking train spend an average of 23 minutes in the train, suggesting that they use the train to travel near distances, as suggested by the Commuter Pattern by distance.
f. Commuters Distance Patterns grouped by Commuter Type

Distance Travelled Grouped By Commuter Type	Travel Time Grouped By Commuter Type
- Distributions commuter_category=Child	- Distributions commuter_category=Child
	travel_time_min
This distance travelled by Child suggest that most of the Child Travel to nearby stations. For example, Children board the train from Yew Tee MRT and disembark at Bukit Batok MRT station to visit the arcade or watch a movie at West Mall.	The time travelled by Child is right skewed. This suggests that most Child do not travel for long duration.

g. Commuters Travel Patterns grouped by Different zones

i. Boon Lay

Entry 7	Exit Time
- Distributions origin_location_name=Boon Lay	- Distributions origin_location_name=Boo
\triangle - hourEnter	\triangle - hourExit
There are two peaks, one at 7AM and one at 6PM. At 6PM this suggests that heart landers are traveling to work. For the 6PM peak, this suggests that people who work around Boon Lay are going home from work and are mostly factory workers who are Malaysians. This is most likely the case as Boon Lay is close to factories and industrial estates.	There are two peaks, one at 8AM one at 6PM. This suggests that commuters who board the train from Jurong East spend an hour traveling to work. For the second peak, this indicates that the factory workers live near Boon Lay MRT station. This is most likely he case as most factory workers are Malaysians and it is more economical to live near their workplace.
Distance Travelled - Origin station from Boon Lay	Duration Travelled - Origin station from Boon Lay

There are two peaks, one at 8 KM one at 20KM. This could mean two possible scenarios: the 8 KM peak could indicate factory workers who travel to Jurong East MRT station to take the bus back to Johor Baharu (SBS Service 160). For the 20KM peak, this could suggest that the Malaysian Factory workers travel to Kranji MRT station to take the bus back to Johor Baharu (SBS Service 170).

There are two peaks, 15 minutes and 40 minutes. The travel duration is also indicative of the previous hypothesis that the factory workers are heading to either Kranji or Jurong East MRT Station.

ii. Raffles Place

Entry Time

- Distributions origin_location_name=Raffles Place $\Delta \nabla$ hourEnter

The distribution for commuters entering Raffles Place MRT follows a left skewed distribution. This suggests office workers are making their way home.

Exit Time

- Distributions origin_location_name=Raffles Place
$\Delta \nabla$ hourExit

$$
\text { Normal } 3 \text { Mixture }
$$

Similar to the entrance pattern, the exit pattern for Raffles Place follows a left skewed distribution. This could suggest that commuters who work around Raffles Place take between an hour or two to travel away from Raffles Place. This suggests that commuters from Raffles Place are heading back home to the heartlands after work. This could also suggest that more people are ending work towards the later quarter of 6PM. For example, a commuter who boards the train at 6.55 PM might reach home at 7.04PM - which might explain the reason the 7PM peak.

Distance Travelled - Origin Station from Raffles Place

- Distributions origin_location_name=Raffles Place
Δ distance_travelled

$\begin{array}{lllllllllllllllllllll}2 & 5 & 8 & 11 & 14 & 17 & 20 & 23 & 26 & 29 & 32 & 35 & 38 & 41 & 44 & 47\end{array}$
-Normal 3 Mixture
The distribution is right skewed. This suggests that commuters who travel from Raffles place live near Raffles Place. However, there is also a second peak at 8 KM and 20 KM . This two indicate that there are people who live further from Raffles Place, such as Ang Mo Kio and Queensway.

Duration Travelled - Origin Station from Raffles Place

- Distributions origin_location_name=Raffles Place
Δ travel_time_min

Normal 3 Minture
Confirming the hypothesis from the distance travelled, most of those who start their journey from Raffles Place live nearby. This is evident as most of those who start their journey from Raffles place take about 10-15 minutes to their destination.

iii. Orchard

The graph is left skewed with a peak at 6PM. This is similar to the Raffles Place graph that has a peak at 6PM. This suggest that commuters who work around Orchard MRT station heading back home. A second peak is also seen at 9PM. This suggests that retail staffs working around Orchard MRT are heading back home. This also suggests that there is more commuter traffic towards the later part of the day.

Exit Time

- Distributions origin_location_name=Orchard
Δ hourExit

-Normal 3 Mixture
The graph is left skewed. This suggests that there are commuters who travel away from Orchard take about an hour to go back home. The patterns are similar to the entrance, with two peaks at 6PM and 10PM. This suggests workers reaching home at 6PM, and retail staff reaching home at 10PM. This also suggests that retail workers working in Orchard stay far away from Orchard. This could also be interpreted that most of the retail staff working in Orchard leave after the second quarter of 9PM, thus reaching home at 10PM.

This graph suggest that the distance travelled away from Orchard is about 3 KM.
iv. Tampines

There are two main peaks for Tampines, one at 7AM one at 8AM. This suggests that heart landers are heading to work. Another peak is also seen at 6PM. This suggests that workers who work around Tampines MRT station are heading back home.

Duration Travelled - Origin station from Orchard

- Distributions origin_location_name=Orchard
Δ travel_time_min

-Normal 3 Mixture
There are two peaks for this, one at 10 minutes, another one at 15 minutes. This suggests that most of the commuters take about 15 minutes to their destination from Orchard.

Exit Time

- Distributions origin_location_name=Tampines

There is one main peak for the hour exit, 8AM. This suggests that commuters who travel from Tampines could be travelling to work. As there are two peaks for hour enter, but one peak for exit time, this suggest that commuters from Tampines spend Boon.

There are two peaks for distance travelled from Tampines. One is at 2 KM , the other around $12-19 \mathrm{KM}$. This matches the hypothesis based on the exit timing where there are two types of commuters in Tampines, those who work far away from Tampines (and spend more than a hour travelling) and those who work around Tampines.

Duration Travelled - Origin station from Tampines

- Distributions origin_location_name=Tampines

There are two peaks, one at 5 minute one at 30 minutes. This confirms the theory in the distance travelled that there are two types of commuters in that start their journey in Tampines, long distance commuters and those who travel short distances.

v. Woodlands

Entry Time	Exit Time
- Distributions origin_location_name= Woodlands	- Distributions origin_location_name=Woodlands
\triangle - hourenter	\triangle hourExit
There are two peaks for the hour of entrance for the Woodlands station, one at 7 am the other at 6 pm . This suggests that most commuters from Woodlands are heart landers who are taking the train to work. The second peak at 7pm suggests that the workers from the industrial estates in Woodlands are heading home.	There are two peaks, similar to the entrance patterns, however the morning peak is at 8am. This suggests that commuters from Woodlands take about an hour to travel to work.
Distance Travel - Origin Station from Woodlands	Duration Travelled - Origin Station from Woodlands

This concludes the EDA. We will now proceed to analyse the different time series data mining techniques before picking on one before running data mining on the dataset.

13. References

