Group08 proposal

From Visual Analytics for Business Intelligence
Jump to navigation Jump to search

Wolf of HDB Street

 

Proposal

 

Poster

 

Application

 

Research Paper




PROBLEM & MOTIVATION

Problem
As a buyer looking for Resale HDB flats, it can be difficult to make a purchase decision due to the lack of information in the market. Information such as increasing or decreasing price trends over the years for each estate (e.g. Tampines) or submarket (e.g. 4-ROOM flats) could be essential in the decision making process.

Motivation
According to Ms. Christine Sun, head of research and consultancy at OrangeTee, She commented in November last year (2019) that demand for HDB resale flats has been strengthening in the recent months. However, our group felt that the statement was too generalised as there are several submarkets in the resale of HDB flats such as 3-ROOM flats and 5-ROOM flats just to name a few. Each submarket could have a different trend. Additionally, trends could also vary across different estates such as Bukit Merah and Tampines. The information online would not be useful for people looking at specific submarkets in certain estates.

OBJECTIVES

Target Group: Resale flat buyers
Our goal in this project is to design and create an interactive one-stop visualization tool that could provide Resale flat buyers with information such as:

  • Changes of flat prices over time for each submarket by estate (e.g. 4-ROOM flats price changes over the past 5 years for Ang Mo Kio)
  • High and low value estates based on past prices (e.g. Tampines is a low value estate based on prices from the past 5 years)
  • Changes in resale prices based on remaining lease (i.e. age of the estate) for each estate
  • Distribution of flat prices for each submarket and estate

These information would help buyers make better purchase decision(s).

DATASET

Data/Source Variables/Description Methodology

Resale Flat Prices (January 1, 2017 to January 31, 2020)
Taken from: Data.gov.sg
Link to Data Source

  1. month: Transacted Year & Month
  2. Town: Town the flat is situated in
  3. Flat Type: Type of Housing
  4. Block: Identifier for each Housing
  5. Street Name: Identifier for each Street
  6. Storey Range: Range of Storey the flat is situated in
  7. Floor Area Sqm: Size of flat
  8. Flat Model: Flat Model
  9. Lease Commence Date: Start Date of Lease
  10. Remaining Lease: Duration remaining for Lease
  11. Resale Price: Price the Flat is sold for

Obtain information on flat prices by:

  • Town
  • Flat Type
  • Town & Flat Type (e.g. 4-ROOM in Tampines vs. 4-ROOM in Bedok)
  • Town & Block (e.g. 105 TAMPINES vs. 115 TAMPINES)
  • Storey Range
  • Floor Area
  • Town & Floor Area
  • Remaining Lease

The list is non exhaustive, more could be added in the future.

BACKGROUND SURVEY OF RELATED WORK

In order for our group to design a new visualisation, it was important to us that we understand the current work out there in the field. This will enable us to make informed decisions on developing our own visualisations. We can also learn from the current visualisations to ensure that our own work adds value and to not repeat any mistakes made. Listed below are screenshots of visualisations and their learning points respectively.


Reference of Other Interactive Visualization Learning Points

Title: Official HDB Map Services
Image5

Source: https://services2.hdb.gov.sg/web/fi10/emap.html

  • This is an interactive visualisation by HDB that we can search and filter different regions
  • This visualisation is quite messy as icons of all current HDB in a particular is shown, and the user might be confused to which house to pick from. Furthermore we are not able to understand the price changes across time
  • The advantage of this visualisation is being able to visualise the clustering of HDB flats in a particular region

Title: Average HDB resale prices by town treemap
Image3

Source: http://sgyounginvestment.blogspot.com/2018/03/visualisation-of-hdb-resale-prices-in.html

  • This is a heatmap that shows the relationship of average resale prices by towns
  • One further improvement that we can do to this visualisation is to add in subcategories of the different resale prices. These subcategories could be type of HDB resale flats and which storeys they are on

Title: Distribution of Past HDB Transactions
Image7.png

Source: https://hdbviz.shinyapps.io/hdbviz/

  • This is a highlight table that can be used to depict the distribution of price compared to region and flat type. Furthermore there is a more detailed box plot at the side that visualises the range of price
  • One improvement that can be made to this visualisation is labelling the highlight table to include the prices of each cell, this is to give clarity by showing the magnitude of the price
  • One other improvement that can be made to this visualisation is to allow the user to have an option to include volume of sales as well.



Title: Distribution of 4-Room HDB Resale Prices By Town
Image2.jpg

Source: https://medium.com/@wojiefu/hdb-pusle-visualization-of-singapore-hdb-flat-resale-records-2e2fbedbee91

  • This is a animated visualisation of HDB resale prices on the map of Singapore, it is very effective in showing us the changes in number of occurrence of transactions being made at what frequency
  • A disadvantage of this visualisation is that there is no legend or information to relate the colours of the points and the actual resale price
  • A disadvantage of this visualisation is that there is no clear indication of which region belongs to which section in the geography map of Singapore. This leaves the user with the onus to understand the location in Singapore


REFERENCE LIST

References

  1. https://www.straitstimes.com/singapore/more-hdb-resale-flats-sold-in-october-after-higher-housing-grants-income-ceilings-kicked
  2. https://www.businesstimes.com.sg/hub-projects/property-2019-september-issue/hdb-resale-market-sees-strong-demand
  3. https://www.reddit.com/r/singapore/comments/dubsyk/visualising_30_years_of_hdb_resale_flat_prices/
  4. https://medium.com/@wojiefu/hdb-pusle-visualization-of-singapore-hdb-flat-resale-records-2e2fbedbee91
  5. http://sgyounginvestment.blogspot.com/2018/03/visualisation-of-hdb-resale-prices-in.html
  6. https://services2.hdb.gov.sg/web/fi10/emap.html
  7. https://hdbviz.shinyapps.io/hdbviz/

KEY TECHNICAL CHALLENGES & MITIGATION

No. Challenge Description Mitigation
1. Lack of Familiarity with Tools Everyone in the group do not know how to program in RShiny for visualisation We will learn Rshiny during class, call for consultation and rely on Googling for any programming challenges
2. Viability of Ideas We do not know if the current dataset will provide all the information that we need to conduct analysis and building of visualisations from. There are multiple dataset online to use and we can use Prof Kam's REALIS dataset provided to us as well
3. Lack of Domain Knowledge HDB resale prices are affected by a spectrum of different factors such as policy measures and redevelopment. It is hard for us to understand without domain knowledge. Learn from informative websites such as from HDB and iteratively discover and learn insights into the dataset

STORYBOARD

stooryboard

MILESTONES

Milestones.jpg

COMMENTS

No. Name Date Comments
1. (Name) (Date) (Comment)
2. (Name) (Date) (Comment)
3. (Name) (Date) (Comment)