Difference between revisions of "FLATearthers"
Jump to navigation
Jump to search
Benjamin Ng Wei Xian
Yong Yong Qing
Goh Mi Shan, Brittany
Line 7: | Line 7: | ||
{|style="background-color:#F7F7F7; color:#1D7372; padding: 10 0 10 0;" width="100%" cellspacing="0" cellpadding="0" valign="top" border="0" | | {|style="background-color:#F7F7F7; color:#1D7372; padding: 10 0 10 0;" width="100%" cellspacing="0" cellpadding="0" valign="top" border="0" | | ||
| style="padding:0.3em; font-size:100%; background-color:#7DA2A9; text-align:center; color:#F5F5F5" width="10%" | | | style="padding:0.3em; font-size:100%; background-color:#7DA2A9; text-align:center; color:#F5F5F5" width="10%" | | ||
− | [[ | + | [[FLATearthers | <font face="Arial" color="#040F3D" size=2><b>TEAM</b></font>]] |
| style="background:none;" width="1%" | | | style="background:none;" width="1%" | |
Latest revision as of 20:29, 16 February 2019
Group Members |
Project Description |
Our project aims to find out how external and internal factors may affect resale housing prices. External factors are, though not limited to, noise levels, proximity to hawker centers, MRT stations, shopping malls, schools and eldercare services. Internal factors are, though not limited to, remaining lease, number of rooms, floor, flat type and age of the flat.
We will be using 3 different models:
- 1. Hedonic pricing model
- 2. Geographically weighted regression
- 3. Geographically and temporally weighted regression
to compare and explain how the factors stated above may, affect resale housing prices.