Difference between revisions of "Lesson07"

From Geospatial Analytics and Applications
Jump to navigation Jump to search
 
(20 intermediate revisions by the same user not shown)
Line 28: Line 28:
 
|}
 
|}
 
<br/>
 
<br/>
 +
 +
<font size="6">'''Modelling Spatial Varying Relationship: Geographically Weighted Regression methods'''</font>
  
 
=Content=
 
=Content=
* What is geospatial analytics?
+
* Granddaddy of All Models: Multiple Regression
* Motivation of promoting geospatial analytics
+
* Basic concepts of Spatial Non-stationary
* Case study
+
* Geographically Weighted Regression (gwr) Methods
* An overview of Geographic Information Systems (GIS)
+
** Basic principles and concepts
* GIS versus Geospatial Analytics
+
** Distance matrix, kernel and bandwidth
 +
** Basic grw
 +
** Beyond basic grw
 +
** GW regression and addressing local collinearity
 +
 
 +
 
 +
=Must do=
 +
 
 +
Read:
 +
* Brunsdon, C., Fotheringham, A.S., and Charlton, M. (2002) “Geographically weighted regression: A method for exploring spatial nonstationarity”. Geographical Analysis, 28: 281-289.
  
Lesson 7: Geographical Segmentation with Spatially Constrained Cluster Analysis
+
* Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) "GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models". *Journal of Statistical Software*, 63(17):1-50, [http://www.jstatsoft.org/v63/i17/] Section 1, 2, 3, 6 and 8.
• Basic concepts of geographic segmentation
 
• Conventional cluster analysis techniques
 
• Approaches for clustering geographical referenced data
 
o Hierarchical clustering with spatial constraints
 
o Minimum spanning trees
 
o Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)
 
  
References
 
  
Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811.
+
=In-Class Exercise=
  
Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822.
+
* Hands-on Exercise 7. The handout and data sets are available at course eLearn.
  
Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.
 
  
 +
=R Packages=
  
 +
'''GWmodel''': Geographically-Weighted Models [https://cran.r-project.org/web/packages/GWmodel/index.html]
  
 +
* Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) "GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models". *Journal of Statistical Software*, 63(17):1-50, [http://www.jstatsoft.org/v63/i17/] Section 1, 2, 3, 6 and 8.
  
 +
* Lu B, Harris P, Charlton M, Brunsdon C (2014) "The GWmodel R Package: further topics for exploring Spatial Heterogeneity using Geographically Weighted Models". *Geo-spatial Information Science* 17(2): 85-101, [https://www.tandfonline.com/doi/full/10.1080/10095020.2014.917453]
  
 +
=References=
  
 +
==Methods==
  
=Lesson competencies=
+
Brunsdon, C., Fotheringham, A.S., and Charlton, M. (2002) “Geographically weighted regression: A method for exploring spatial nonstationarity”. Geographical Analysis, 28: 281-289.
  
=Technical References=
+
Brunsdon, C., Fotheringham, A.S. and  Charlton, M., (1999) “Some Notes on Parametric Significance Tests for Geographically Weighted Regression”. Journal of Regional Science, 39(3), 497-524.
  
 +
Harris, P. et al., (2010) “The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets”. Mathematical Geosciences, 42(6), 657-680.
  
=Application References=
+
==Applications==

Latest revision as of 22:24, 14 February 2019

Claraview.png IS415 GeoSpatial Analytics and Applications

About

Weekly Session

Take-home Exercises

Geospatial Analytics Project

Course Resources

 


Modelling Spatial Varying Relationship: Geographically Weighted Regression methods

Content

  • Granddaddy of All Models: Multiple Regression
  • Basic concepts of Spatial Non-stationary
  • Geographically Weighted Regression (gwr) Methods
    • Basic principles and concepts
    • Distance matrix, kernel and bandwidth
    • Basic grw
    • Beyond basic grw
    • GW regression and addressing local collinearity


Must do

Read:

  • Brunsdon, C., Fotheringham, A.S., and Charlton, M. (2002) “Geographically weighted regression: A method for exploring spatial nonstationarity”. Geographical Analysis, 28: 281-289.
  • Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) "GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models". *Journal of Statistical Software*, 63(17):1-50, [1] Section 1, 2, 3, 6 and 8.


In-Class Exercise

  • Hands-on Exercise 7. The handout and data sets are available at course eLearn.


R Packages

GWmodel: Geographically-Weighted Models [2]

  • Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2015) "GWmodel: an R Package for exploring Spatial Heterogeneity using Geographically Weighted Models". *Journal of Statistical Software*, 63(17):1-50, [3] Section 1, 2, 3, 6 and 8.
  • Lu B, Harris P, Charlton M, Brunsdon C (2014) "The GWmodel R Package: further topics for exploring Spatial Heterogeneity using Geographically Weighted Models". *Geo-spatial Information Science* 17(2): 85-101, [4]

References

Methods

Brunsdon, C., Fotheringham, A.S., and Charlton, M. (2002) “Geographically weighted regression: A method for exploring spatial nonstationarity”. Geographical Analysis, 28: 281-289.

Brunsdon, C., Fotheringham, A.S. and Charlton, M., (1999) “Some Notes on Parametric Significance Tests for Geographically Weighted Regression”. Journal of Regional Science, 39(3), 497-524.

Harris, P. et al., (2010) “The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets”. Mathematical Geosciences, 42(6), 657-680.

Applications