Difference between revisions of "Lesson07"

From Geospatial Analytics and Applications
Jump to navigation Jump to search
Line 35: Line 35:
 
* An overview of Geographic Information Systems (GIS)
 
* An overview of Geographic Information Systems (GIS)
 
* GIS versus Geospatial Analytics
 
* GIS versus Geospatial Analytics
 +
 +
Lesson 7: Geographical Segmentation with Spatially Constrained Cluster Analysis
 +
• Basic concepts of geographic segmentation
 +
• Conventional cluster analysis techniques
 +
• Approaches for clustering geographical referenced data
 +
o Hierarchical clustering with spatial constraints
 +
o Minimum spanning trees
 +
o Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)
 +
 +
References
 +
 +
Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811.
 +
 +
Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822.
 +
 +
Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.
 +
 +
 +
 +
 +
  
  

Revision as of 23:29, 8 January 2019

Claraview.png IS415 GeoSpatial Analytics and Applications

About

Weekly Session

Take-home Exercises

Geospatial Analytics Project

Course Resources

 


Content

  • What is geospatial analytics?
  • Motivation of promoting geospatial analytics
  • Case study
  • An overview of Geographic Information Systems (GIS)
  • GIS versus Geospatial Analytics

Lesson 7: Geographical Segmentation with Spatially Constrained Cluster Analysis • Basic concepts of geographic segmentation • Conventional cluster analysis techniques • Approaches for clustering geographical referenced data o Hierarchical clustering with spatial constraints o Minimum spanning trees o Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap)

References

Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees.” International Journal of Geographical Information Science 20: 797–811.

Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics. 33: 1799-1822.

Guo, D. 2008. “Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (Redcap).” International Journal of Geographical Information Science, 22(7): 801-823.




Lesson competencies

Technical References

Application References