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ABSTRACT 
Application of geospatial analytics on traffic accidents is 
imperative for urban development design to improve road safety. 
Targeting road traffic accidents specific to certain casualty groups 
is also essential for effective traffic management. However, 
clusters of traffic accidents on networks are likely to evolve 
overtime. This characteristic shows that traffic accidents are not 
isolated in time and space. Therefore, traffic accident analyses 
have to incorporate both time and space elements so that 
temporary resources by the traffic police could be allocated 
efficiently, or future road planning efforts by transport authorities 
could be implemented in the right direction. However, currently 
available web-based traffic collisions applications mainly focus 
on visualising traffic accident point patterns. A web-based 
geospatial analytics tool, SIGNAL, is then developed to address 
the need for an interactive network constrained spatio-temporal 
dashboard on traffic accidents. This paper aims to explore the use 
of network constrained spatio-temporal statistical techniques on 
traffic accidents data in Leeds, United Kingdom. Four key 
methods are employed to conduct analyses in SIGNAL. Firstly, 
Network Constrained Kernel Density Estimation is used to derive 
insights on traffic collision intensity patterns. To enable 
identification of statistically significant clusters, Network 
Constrained K-Function is incorporated. Lastly, Network 
Constrained Cross K-Function and Network Constrained Cross 
Pair Correlation are adopted for investigating correlation between 
traffic collision points and variables of interests, such as 
pedestrian crossings, motorway junctions and schools. The results 
obtained from our demonstration highlight key insights that could 
help transport authorities, traffic police and even business users 
better understand spatio-temporal clustering patterns and 
correlations of traffic accidents. 
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1 INTRODUCTION 
In order to attempt to reduce traffic accidents, it is important to 
understand where, when and who is involved in traffic accidents. 
A better understanding of spatio-temporal patterns specific to 
casualty groups aids in developing appropriate preventive 
measures by the authorities. For example, a road segment could 
have high intensity of traffic accidents for the elderly, but those 
traffic accidents could possibly occur only at certain time periods, 
such as at night. In fact, spatio-temporal analysis of traffic 
accidents is well-known to be necessary due to the tendency of 
occurrence along certain road networks and also at the same time, 
be distributed in certain time periods, such as years and months 
[1].  

The use of spatio-temporal analysis involves two dimensions - 
spatial dimension and temporal dimension. The temporal 
dimension describes the evolution of an object overtime while the 
spatial dimension highlights the movement of an object over a 
topography. Other factors such as environmental characteristics, 
involving weather conditions and road surface, are also known to 
be associated with distinct spatial patterns [1].  

In view of the benefits of applying spatio-temporal analyses to 
traffic accidents, our initial focus was on developing a web-based 
geospatial application for Singapore as there is a general lack of 
spatio-temporal geospatial applications developed specific to this 
area. The Singapore Police Force is also concerned about 
accidents involving motorcyclists and elderly jaywalkers as 
motorcyclist accidents still account for more than half of the 
traffic accidents in 2017, and the number of elderly road fatalities 
have been on the rise [3]. Although this serves as grounds for 
adapting our application to Singapore’s context, our team has used 
data from Leeds, United Kingdom instead, due to its easily 
accessible rich diversity of information. Specifically, Leeds’ 
traffic accident data includes coordinates of traffic accidents, time, 
weather and details on casualties, all of which are essential for an 
in-depth spatio-temporal analysis for a certain casualty group. 
While behavioral patterns of drivers and pedestrians in United 
Kingdom may not be reflective of that of Singapore’s, insights 
still provide some indicative directions for investigations by 
Singapore Land Transport Authority and Singapore Police Force. 

 



  
 

 
 

This paper reports on our development efforts in designing and 
implementing a geospatial analytics tool for use by transport 
authorities in analysing traffic accidents. The first few sections of 
the paper provides a general overview of our motivation and 
objectives. This is followed by a quick review on current research 
papers specific to applying geospatial techniques on traffic 
accidents. After which, the approach used in developing our 
application, SIGNAL, including the statistical methods used, 
would be explained before moving on to provide an overview of 
the application interface. The results obtained from analysing 
Leeds’ traffic accidents data would then be discussed. This paper 
concludes by highlighting the areas for improvement and future 
development work for extending our geospatial application. 

2 MOTIVATION & OBJECIVES 
Our application development efforts were motivated by the gap 
between currently available road traffic geospatial tools and 
analysts’ needs. Current geospatial road traffic applications 
mainly portray traffic accidents as point events, with little 
analyses generated to provide in-depth insights. As such, a web-
enabled geospatial analytics tool, SIGNAL, was developed with 
the purpose of allowing users to conduct statistical analyses on 
road networks for selected target groups or environmental 
conditions. It aims to provide transport authorities and traffic 
police with an analytical tool for discovering network-constrained 
spatio-temporal patterns of traffic accidents. Specifically, it 
focuses on the following objectives: 

• To visualise the intensity of traffic accidents on road 
networks cartographically on an internet-based map such as 
ESRI 

• To conduct statistical simulations on road segments to reveal 
evidence of clusters or correlation patterns 

• To provide a user-friendly interface to for practitioners to 
apply relevant filters for different time periods selected 

3 RELATED WORKS 
Spatial analysis of traffic accidents has been conducted by 
researchers for many years. Ya Xin et al. [5] have applied various 
spatial statistical analysis methods to study traffic accidents in 
Wuhan, China. Four techniques were used to explore spatio-
temporal clustering patterns - Weighted Network Kernel Density 
Estimation, Network Cross K-Function, Network differential 
Local Moran’s I and Network Local Indicators of Mobility 
Association. The weighted Network Kernel Density Estimation 
was used to identify traffic accidents hotspot while Network Cross 
K-Function was used to explore whether is there any clustering 
tendencies between traffic collisions and different variable. 
Network differential Local Moran’s I and Network Local 
Indicators of Mobility Association provides straightforward and 
quantitative measures of changes in traffic accidents hotspots. 
These statistical techniques are comprehensive in nature and some 
elements should be incorporated into our SIGNAL application. 

A similar study was conducted to analyse the traffic accidents in 
New York [6]. Spatio-temporal Network Kernel Density 
Estimation (STNKDE) was used to explore hotspots of traffic 
accidents at different time periods. The importance of using 
space-time was emphasised in this paper as more efficient 
allocation of resources was possible by incorporating the second-
dimension of time. However, due to its comprehensive discussion 
on implementing space-time element, other geospatial techniques 
were not discussed. 

As seen, Network Constrained Kernel Density Estimation appears 
to be a commonly used technique to determine the traffic accident 
hotspots. Often, other spatial statistical analytics methods are 
accompanied with Network Constrained Kernel Density 
Estimation to offer in-depth analysis of traffic collisions. Our 
application was thus inspired to incorporate both elements. 

4 ANALYSIS METHODS 
As mentioned in the previous section, a combination of different 
spatial statistical analysis methods is often used by geospatial 
analysts to conduct spatial analysis of traffic accidents. For our 
SIGNAL application, both first-order and second-order methods 
in examining accident point processes are used. First-order 
method includes Network Constrained Kernel Density Estimation 
while second-order methods used are Network Constrained K-
Function, Network Constrained Cross K-Function and Network 
Constrained Cross Pair Correlation Function. 

4.1 NETWORK CONSTRAINED KERNEL 
DENSITY ESTIMATION 

Kernel Density Estimation (KDE) is one of the most popular 
methods for analyzing the first order properties of a point event 
distribution due to its easy and simple implementation [1]. It 
involves estimating the probability density function of a variable, 
or in geospatial terms, the density of features in a neighborhood. 
Investigating the average density of points along the network 
provides a quick insight on which segments of roads have higher 
intensity of traffic accidents. There are two main types of 
intensities when estimating kernel densities in networks. The first 
type is homogeneous intensity function, where all points are 
independent and uniformly distributed in any given set and has 
randomness that is characterized by complete spatial randomness. 
The second type is inhomogeneous intensity function, where 
points are also independence between disjoint sets but unevenly 
distributed according to their spatially varying intensity functions.  

Since traffic accidents almost always happen on roadways and 
inside a network, homogeneity intensity function is applied. The 
kernel estimate of intensity is formally defined as, 

 

 



  
 

 

where x is a given set of point patterns, {x1, … xn}, and κ (v, u) 
is the smoothing kernel to smooth out points on the network, as 
shown in Figure 1, in a book by Adrian et al (2016). The 
smoothing of the point is done with a Gaussian kernel and 
thickness of line is proportional to the kernel value. This can be 
performed using the density.lpp function from the spatstat 
package in R. 

 

Figure 1. Smoothing kernel on a network, with increasing 
bandwidth sigma from the left to right.  

Due to the nature of the data points studied in this paper, that is 
traffic accident and casualty points, it is important to understand 
the impact of and difference between the conventional KDE 
method and the network constrained KDE method.  

 In the conventional KDE (non-network constrained), calculation 
of intensity is based on Euclidean distance search bandwidth and 
does not take into consideration the presence of road network 
structures. This hinders the ability of pinpointing exact locations 
that has high or low intensities of traffic accidents as the density 
values are measured per area unit over a 2-D space. 

Comparatively, network constrained KDE estimates the intensity 
of traffic accidents strictly over a network space. This allows for a 
clear distinction of road networks that has high intensity of traffic 
accidents versus those that are not as density values are measured 
per linear unit over a network instead. 

Figure 2. Comparison of the (a) conventional KDE and the (b) 
network constrained KDE. Performing analysis on the same data 
points using Gaussian kernel and 500 meters bandwidth.  

Figure 2 illustrates the difference between the conventional KDE 
and network constrained KDE on the same set of data and area. 
Evidently, it is expected that the conventional KDE will have the 
highest density in the middle and lower density near the edges, as 
shown in Figure 2 (a). This could be attributed to the fact that 
most accidents tend occur near the city or central area, as 
compared to other areas. However, it is inappropriate to conclude 
as such.  

Although Figure 2 (b) also showed high intensity in the central 
area, there are observable differing levels of intensities within it. 
This would be helpful for the authorities to distinguish areas that 
they should focus on in attempts to reduce the occurrence of 
traffic accidents.   

Thus, network constrained KDE is chosen as the appropriate 
method to analyze the intensity of traffic accident and casualty 
points. 

4.2 NETWORK CONSTRAINED K-FUNCTION 
The Okabe-Yamada Network Constrained K-Function defines the 
Network Constrained K-Function, by adapting the Ripley’s K 
Function through replacing the Euclidean distance with the 
shortest path distance. In this method, given a point v on the 
network, all locations in the network that can be reached from v 
by a path of length shorter than or equal to a radius r, defined by 
the user, would be considered. It is defined by the function below, 
with λ(L) denoting the total length of the linear network: 

 

While the above Network Constrained K-Function constrains 
points to networks, a second-order stationary point process is 
required for our analyses. The Okabe-Yamada Network 
Constrained K-Function assumes that the network itself is 
homogeneous, which is not the case as different locations in the 
network is surrounded by different configurations of line 
segments. Network Constrained K-Functions obtained from 
different networks are not directly compatible in this case. 

The second-order Network Constrained K-Function is proposed 
by Ang et al (2012), known as the ‘geometrically corrected K-
Function’, will be used in our application. It is an extension of the 
Ripley’s K-Function’s benefits of enabling comparison between 
different point processes with different intensities, observed in 
different windows, combined with Okabe-Yamada network 
Constrained K-function. The geometrically corrected K-Function 
is defined by, for all r ≤ R, where u is any location on the 
network: 

 

The above analysis is computed in spatstat by the function 
linearK, and by default uses the second-order Network 
Constrained K-Function, which assumes homogeneity. The 
function linearK requires the input of accidents constrained to 
road network, as seen in below Figure 3. Network Constrained K-
Function is then computed based on the linnet captured in the area 
of analysis. 



  
 

 
 

 

Figure 3: Linnet of Traffic Accidents in Leeds’ city centre 

4.3 NETWORK CONSTRAINED CROSS K-
FUNCTION 

Network Constrained K-Function handles points of the same type 
while Network Constrained Cross-K Function is used for two 
different sets of points. Estimation is based on measuring pairwise 
distances from all points of type i to all points of type j. Thus, for 
any pair of types i and j, the function calculates the expected 
number of points of type j lying within a distance r of a typical 
point of type i, standardised by dividing the intensity of points of 
type j, for r >= 0. The Cross-K Function is as shown below, and it 
is constrained to a network in our application. 

 

This analysis is computed in spatstat by the function linearKcross. 
Similarly, linearKcross requires the input data to be in the form of 
linnet, with accidents and pedestrian crossings as marked point 
pattern processes so that the function can differentiate between the 
two-point patterns (Figure 4 below). 

 

Figure 4: Linnet of Traffic Accidents & Pedestrian Crossings in 
Leeds’ city centre 

4.4 NETWORK CONSTRAINED CROSS PAIR 
CORRELATION FUNCTION 

Similar to Network Constrained Cross K-Function, Network 
Constrained Cross Pair Correlation Function measures pairwise 
distances from all points of type i to all points of type j. However, 
this function calculates the expected number of points of type j 

lying at a distance equal to distance r of a typical point of type i, 
standardised by dividing the intensity of points of type j, for r >= 
0. The cross pair correlation function is as shown below, and it is 
constrained to a network in our application. 

 

This analysis is computed in spatstat by the function 
linearpcfcross. The preparation and processing of data for 
Network Constrained Cross Pair Correlation follows closely that 
of Network Constrained Cross K-Function. 

5 APPROACH 

5.1 DATA COLLECTION 
Data of Leeds Traffic Accident Data (2013 to 2017), Schools and 
Pedestrian Crossings data were collected from the UK Open 
Database in CSV file format, while Leeds’ District Boundary 
Map, Road Network and Motorway Junctions were obtained from 
UK Consumer Data Research Centre (CDRC) in Shapefile (SHP) 
format. 

5.2 DATA CLEANING 
Traffic accident point events were separated from casualty point 
events before removing duplicates. Unique accident points allow 
for visualization of intensity and spatial distribution of traffic 
accidents. Standardization of data, such as, ensuring columns of 
each CSV files and their data types are the same before 
reclassifying selected columns, is conducted. 

5.3 DATA TRANSFORMATION 

 
Figure 5: Overview of Data Transformation 

As our geospatial application involves the use of Network 
Constrained analyses, data has to be transformed to appropriate 
formats before relevant functions could be used. Specifically, 
accident traffic points have to be converted to SpatialPoints and 
then to Point Pattern Processes. Roads would have to be converted 
to SpatialLines and then to Linnet before they could be combined 
with Point Patterns Processes to form Linear Point Patterns. In 
order to constrain the Linear Point Patterns to a target area of 



  
 

 

interest, it has to be intersected with the Owin of District 
Boundary Map. The below figure summarises the key data 
transformation that takes place. 

6 SYSTEM ARCHITECTURE 
Our application is built using R programming language due to its 
numerous spatial analysis package such as RGDAL, Spatstat and 
Leaflet and the ease and flexibility of creating an interactive web 
application. Our application is then deployed to Shinyapp.io so 
that users are able to view and interact with it online using their 
preferred browser.  

The following R packages are used during the development of our 
application: 

shiny shinydashboard tidyverse dplyr 

DT Lubridate Leaflet Rgdal 

Sf Sp Spdep maptools 

Spatstat Raster Rgeos shinycssloaders 

shinyjs classInt V8 Rsconnect 

 

7 APPLICATION 

7.1 APPLICATION USER INTERFACE DESIGN 
Our application consists of 6 tabs which will lead the user to our 
overview tab, different network constrained analysis tabs and our 
data set. 

 

Figure 6: Application User Interface for Network Constrained 
Kernel Density Estimation  

For Network Constrained KDE tab, there are 2 maps showing the 
result for traffic accident and casualty. The user is able to zoom in 
or out and move the map to an area of interest When the user 
moves or zooms into the top map (traffic accident KDE), the 
bottom map (casualty KDE) will be updated automatically as both 
maps are synchronised. This ensures that analyses on both maps 
are at the same geographical area for fair comparison. On right 

side of the application, there are different types of filters and 
controls for the user to select.  

 

Figure 7 Application User Interface for Network Constrained 
Cross K-Function  

Analyses in other tabs also make use of the same user interface for 
easy navigation. The map now contains markers to indicate the 
geographical positions of traffic accidents events and other 
variables (Pedestrian Crossing, Motorway Junctions and Schools). 
The user can zoom in or out and move the map to an area that 
they wish to run the analysis on. There is a result box at the 
bottom of the map will display the result of the analysis. On the 
right side of the application, there are also different types of filters 
and controls for the user to select. 

7.2 FILTERS AND COMPONENTS OF THE 
APPLICATION 

7.2.1 TIME FILTERS 
The user will be able to filter the data by year, 
month and hours. 

 

 
 

 

7.2.2 ENVIRONMENT FILTERS 
The user will be able to filter the data by:  

Weather conditions – All, Fine 
without high winds, Fine with 
high winds, Snowing without 
high winds, Snowing with high 
winds, Raining without high 
winds, Raining with high winds, 
Fog or mist, unknown and others 

Road Surface – All, Dry, Frost / 
Ice, Wet / Damp, Snow, Others 

and Flood (surface water over 3cm deep) 

 

 



  
 

 
 

7.2.3 CASUALTY FILTERS 
The user will be able to filter the data by: 

Vehicle Class – All, Car, 
Motorcycle, Bus / Coach, Bicycle, 
Goods Vehicle, Taxi / Private Hire, 
Mini Bus, Agricultural Vehicle, 
Mobility Scooter, Horse and Tram 

Age Group – All, Adult, Elderly, 
Children and Young Adults 

Type of Casualty – All, Driver or 
rider, Passenger and Pedestrian 

Casualty Severity – All, Slight, 
Serious and Fatal 

 

7.2.4 KERNEL DISTANCE SLIDER 

 
The bandwidth of kernel density plot. The user is able to drag the 
slider to state the kernel distance (in metres) which they want to 
run for the analysis. 

7.2.5 SIMULATION SLIDER 

 
The user is able to drag the slider to state the number of 
simulations which they want to run for the analysis. 

7.2.6 VARIABLE SELECTION DROPDOWN 

 
The user is able to choose which variable they want to run the 
analysis with the traffic accidents event(s). This variable selection 
is only for Network Constrained Cross K-Function and Network 
Constrained Cross Pair Correlation Function analysis. 

 

7.2.7 GRAPH INTERPRETATION FUNCTION 

 
The user will choose an option according to the graph output and 
a general interpretation will be shown on the application. The 
graph interpretation function aids the user in interpreting the 
graph output. This graph interpretation function will be placed in 
all analysis except Network Constrained KDE. 

8 RESULT 
Network Constrained KDE method detects hot spots by 
calculating the density of traffic accidents for each raster cell size 
(23 by 23 meters) along the network within a specified bandwidth 
(e.g. 500 meters). Density values shown in the legend is measured 
in square kilometers, and it can be converted to expected count for 
easier interpretation. Since density is count divided by area, 
multiplying density by area will give an expected count (Krause, 
2013). For instance, suppose the analysis is on accidents in a city 
over one month, a raster cell with a density value of 15,000, and 
the raster cell size area of 0.000529 (0.023 * 0.023) square 
kilometers, will give an expected count of approximately 8 
accidents (calculated by 15,000 * 0.000529). This can be 
interpreted as, given the same accident conditions month to 
month, it can be expected to see about 8 accidents in the following 
month. 

Following are three network constrained KDE use cases to 
explain how the results of the models can be analyzed and how it 
can be useful to potential users. In analyzing these use cases, the 
following filters are assumed to be constant throughout:  

• Month: 1 to 12 

• Road Surface: Dry 

• Weather Conditions: Fine without high wind 

• Casualty Severity: All (Slight, Severe, Fatal) 

• Kernel Distance (m): 500 

 

 

 

 

 

 

 



  
 

 

Table 1 summarizes the three use cases, highlighting the key 
differences in the filters applied. 

 

Filters Use Case 1 

(Elderly 
Casualties)  

Use Case 2 

(Motorcycle 
Accidents over 
a three-year 
period)  

Use Case 3 

(Pedestrian 
Accidents, 
comparing 
Time)  

Year 2015 to 
2017 

2015 vs 2016 vs 
2017 

2015 to 2017 

Hours 0 - 23 0 - 23 9 - 17, 17 - 0 

Vehicle 
Class 

All Motorcycle All 

Age 
Group 

Elderly All All 

Type of 
Casualty 

All All Pedestrian 

Table 1: Summary of Network Constrained use cases 

8.1 USE CASE 1 – ELDERLY CASUALTIES 

 

 
Figure 8: Elderly Casualties 

When it comes to traffic accidents, it is instinctive for most people 
to only focus on the traffic accidents KDE to identify areas with 
high intensity of accidents and overlook the concentration of 
casualty points. For instance, if the authorities are looking into 
reducing the number of elderly casualties, naturally, they will 
focus on areas with high intensity of traffic accidents. However, 

that may not be representative of the age group that they are 
targeting. Thus, the solution provided two different network 
constrained KDE maps, one focusing on traffic accidents as a 
whole and the other focusing on the casualties.  

In Figure 8, although the intensities of the two maps are not 
strikingly different, there are notable areas that can be focused on. 
In the first circled area (denoted as (1) in Figure 8), the intensity 
of traffic accidents is relatively high, however, the intensity of 
casualties is the opposite. This indicates that if the authorities are 
focusing on reducing elderly casualties, they should not be 
focusing all their resources in this area. Instead, they should be 
focusing in areas with higher intensity of casualty but were not so 
apparent when looking at the intensity of traffic accident, as 
shown in the second circled area (denoted as (2) in Figure 8). In 
Figure 8 (2), it is shown that there are relatively low traffic 
accidents happening in at area, however, the intensity of elderly 
casualties are quite high. This serves to show that the authorities 
should be focusing on this area, should their primary goal be 
reducing the number of accidents involving elderly casualties. 

8.2 USE CASE 2 – MOTORCYCLE ACCIDENTS 
OVER THREE YEAR PERIOD 

 
Figure 9 (a) Traffic Accident Network Constrained KDE on 
Motorcycle Accidents in 2015 

 
Figure 9 (b) Traffic Accident Network Constrained KDE on 
Motorcycle Accidents in 2016 

 

Figure 9 (c) Traffic Accident Network Constrained KDE on 
Motorcycle Accidents in 2017 



  
 

 
 

With the increasing concerns on motorcycle accidents, it is 
important to understand areas with constant high intensities. In 
Figure 9, traffic accident network constrained KDE is plotted over 
three consecutive years, from 2015 to 2017, respectively. Three 
areas have been circled to highlight the constant high intensity of 
traffic accidents at the same area over the years. It is an important 
signal for the authorities to uncover reasons why these areas are 
persistently having high intensity of traffic accidents and 
implement countermeasures to lower motorcycle accidents. 

8.3 USE CASE 3 – ACCIDENTS OVER 
DIFFERENT TIME PERIODS 

 

Figure 10 (a) Traffic Accident Network Constrained KDE – Day 
Time (9am to 5pm) 

 

Figure 10 (b) Traffic Accident Network Constrained KDE – Day 
Time (5pm to 12am) 

In analyzing the temporal aspect of the traffic accidents, we 
defined day time as 9am to 5pm and night time as 5pm to 
midnight (12am). As seen in Figure 10, circled in teal color are 
areas where there are higher intensity of accidents in the day time 
as compared to night time. On the contrary, circled in pink color 
are areas where there are higher intensity of accidents in the night 
time as compared to the day time. With this information, it is 
worth investigating the possible reasons of such distinction. One 
likely explanation for having areas with higher intensity at night 
as compared to the day time, could be due to the reduced lighting, 
where the number street lights present at those areas of concern 
might not be sufficient, which inherently resulted in more 
accidents happening at that area. Another possible reason could be 
due to alcohol-impaired driving, where drivers are driving under 
influence. The authorities can look into increasing the frequency 
of traffic patrolling at those area, in an attempt to reduce potential 
drink driving from happening.  

After analysing the intensity of traffic accidents, authorities can 
proceed to investigate if there are signs of traffic accident clusters 
or correlation patterns between variables such as pedestrian 
crossings and traffic accident points in a selected road segment. 

These results are drawn from Network Constrained K-Function, 
Network Constrained Cross K-Function and Network Constrained 
Cross Pair Correlation in our application. Subsequent discussions 
on results is focused on the city centre of Leeds, where Network 
Constrained Kernel Density Estimation has pointed out as having 
consistently high intensity of traffic accidents. 

8.4 USE CASE 1 – ELDERLY CASUALTIES 

 
Figure 11: Network Constrained K-Function on Elderly Casualties 

Network Constrained K-Function has proved that there is 
evidence of statistically significant clustering of traffic accidents 
involving all types of elderly casualties in the north of city centre 
for most distances along Inner Ring Road and The Headrow 
Road, as shown in above Figure 11.  

A similar analysis was generated for accidents involving 
motorcyclists as shown in below Figure 12. 

 
Figure 12: Network Constrained K-Function on Accidents 
Involving Motorcyclists 

Unlike traffic accidents involving elderly casualties, traffic 
accidents involving motorcyclists appear to be show signs of 
being statistically significant dispersion, only at distances of 2 km 
and above along Inner Ring Road and The Headrow Road. Thus, 
while Network Constrained Kernel Density Map shows high 
intensity of accidents involving motorcyclists, it does not mean 
that the accidents are clustered. These analyses made were 
possible with the use of Monte Carlo simulation, without which 
the use of Kernel Density Estimation would be unable to prove 
whether there is a sign of statistically significant clustering or 
dispersion. 

Network Constrained Cross K-Function and Network Constrained 
Cross Pair Correlation are used to determine if there is evidence 
of correlation between accident points and variables selected. 
Below analyses are generated between pedestrian crossings and 
elderly, as well as with accidents involving motorcycles. 

 

 

 



  
 

 

 

8.5 USE CASE 1 – ELDERLY CASUALTIES 

 
Figure 13: Network Constrained Cross K-Function Between 
Pedestrian Crossings and Elderly Casualties 

Network Constrained Cross K-Function revealed evidence of 
correlation between pedestrian crossings and elderly for most of 
the distances along The Headrow Road and Woodhouse Lane, 
peaking at 800m (seen in above Figure 13). This means that 
accidents involving elderly tend to occur near pedestrian crossings 
more often than random. Authorities aiming to investigate traffic 
accidents involving elderly could look into this road segment, 
paying special attention to pedestrian crossings. The same 
analysis was conducted for accidents involving motorcyclists and 
below results (Figure 14) shows no significant correlation. Such 
accidents occur randomly at pedestrian crossings and it would be 
more relevant for the user to investigate correlation with other 
variables, such as motorway junctions. 

 
Figure 14: Network Constrained Cross K-Function Between 
Pedestrian Crossings and Accidents Involving Motorcyclists 

While Network Constrained Cross Pair Correlation offers an 
alternative to computing correlation, there are instances where its 
results contradicts that of Network Constrained Cross K-Function. 
As Network Constrained Cross Pair Correlation only include 
points equal to the distance from pedestrian crossings, it is 
recommended for users to evaluate the importance of including 
points less than the radius from pedestrian crossings when 
choosing between the two functions. 

8.6 USE CASE 1 – ELDERLY CASUALTIES 

 
Figure 15: Network Constrained Cross Pair Correlation Between 
Pedestrian Crossings and Elderly Casualties 

As shown above, pedestrian crossings and elderly casualties 
appear to correlate significantly at smaller distances (about 200m 
and below), while they do not correlate significantly at large 
distances (about 1200m and above). This differs from our findings 
with Network Constrained Cross K-Function, which shows that 
pedestrian crossings and elderly tends to correlate at larger 
distances. Similarly, Network Constrained Cross Pair Correlation 
shows that pedestrian crossings and accidents involving 
motorcyclists (as shown in below Figure 16) are mostly random, 
and do not correlate significantly at large distances (above 800m 
and above), which partially supports our findings from Network 
Constrained Cross K-Function. 

 
Figure 16: Network Constrained Cross Pair Correlation Between 
Pedestrian Crossings and Accidents Involving Motorcyclists 

 

9 DISCUSSION 
The demonstration of SIGNAL at GeoWorks, Singapore Land 
Authority, on 8th April 2019 has allowed our team to conduct user 
studies to obtain feedback. The user studies proved that the 
statistical analyses implemented in our application can help 
practitioners better understand spatial-temporal patterns and 
spatial relationships involving road accidents. The separation of 
traffic accident and casualty network-constrained kernel density 
estimation maps offers an alternative view on which road 
segments to focus on, depending on the transport authorities’ 
target group. Different intensities revealed by both maps for the 
same set of filters points to different road segments to investigate 
on. Additionally, results from statistical simulations are made 
easier to interpret using the multiple-choice selection based on 
users’ observations, thus allowing business users to be more 
confident in their statistical conclusions. Moreover, the methods 
used in SIGNAL are exploratory, which helps practitioners to 
uncover spatio-temporal patterns using relevant filters at a road 
segment level. The spatial correlations of variables such as 
schools could be compared to traffic accident points involving 
different age groups or weather conditions easily to reveal 
interesting insights. 

10 LIMITATIONS 
While SIGNAL incorporates a few key network-constrained 
analyses, it is currently focused on a city in England. Although the 
analyses may not be relevant to Singapore, the presence of certain 
types of roads in Leeds, such as roundabouts, is useful as we have 
obtained feedback that Singapore is currently considering 
roundabouts in its road upgrading plans. Analysing if accident 
clusters tend to form around roundabouts could influence 



  
 

 
 

Singapore’s plans in building roundabouts. Another limitation is 
that uploading of SHP files and CSV files by users have yet to be 
incorporated due to complications. 

11 FUTURE WORKS 
SIGNAL has the potential to be extended and further refined. The 
application can be adapted for use in Singapore after collecting 
appropriate traffic accident data. Accessibility of emergency 
services, such as SCDF stations, from accident-prone areas could 
then be calculated using Hansen’s Accessibility with Network 
Distance, to determine if there are sufficient emergency vehicles 
located near accident-prone areas. Animated visualisations to 
show a quick overview of trends could be considered while 
Network Constrained Getis-Ord Gi* [2] could be used to detect 
which statistically significant high-risk road segments. 
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