

IS415 Geospatial Analysis and Application

User Guide for

Network-constrained Spatio-temporal Analysis Tool for Traffic Accidents in Leeds, United Kingdom

Prepared By:

Ang JiaYing Sheryl Chong Man Er Tan Yan Lin

Table of Contents

Introduction	3
Running the Application	3
Application	3
Overview	3
Network Constrained Kernel Density Estimation	4
Type of filters	4
Instructions	5
Network Constrained K- Function	7
Type of Filters	7
Instructions	3
Network Constrained Cross K-Function	Э
Types of Filters	Э
Instructions1	1
Network Constrained Cross Pair Correlation Function	3
Type of Filters1	3
Instructions14	4

Introduction

This document will guide you on how to use analysis tool.

Running the Application

If you have downloaded our application and plan to run our application on your computer. Please perform the following steps:

- 1. Unzip the file
- 2. Open app.R fie in R studio
- 3. Click on Run at the top right-hand corner of R Studio
- 4. A window will appear with the functional application

Application

Overview

The overview page provides the user with an overview of the project and the list of features available in the application. At the left-hand side of the application is the side menu bar with 5 other tabs that will lead the user to 4 different analysis aspects of the visualization and the data set which is used for the application.

Network Constrained Kernel Density Estimation

Type of filters

Time Filters	-		
Year 2013 2015 2013 2014 2015 2016	2017		
Month 1 1 3 5 7 9 1	12		
Hour 0 0 3 6 9 12 15 18 2	23		
e i celu			
Environment Filters	-		
Weather Conditions			
Fine without high winds	•		
Road Surface			
Dry	•		
Casualty Filters	-		
Vehicle Class			
Car	•		
Age Group			
Elderly	•		
Type of Casualty			

All

All

Casualty Severity

Time Filters

The user will be able to filter the data by year, month and hours.

Environment Filters

The user will be able to filter the data by:

- Weather conditions All, Fine without high winds, Fine with high winds, Snowing without high winds, Snowing with high winds, Raining without high winds, Raining with high winds, Fog or mist, unknown and others
- Road Surface All, Dry, Frost / Ice, Wet / Damp, Snow, Others and Flood (surface water over 3cm deep)

Casualty Filters

The user will be able to filter the data by:

- Vehicle Class All, Car, Motorcycle, Bus / Coach, Bicycle, Goods Vehicle, Taxi / Private Hire, Mini Bus, Agricultural Vehicle, Mobility Scooter, Horse and Tram
- Age Group All, Adult, Elderly, Children and Young Adults
- **Type of Casualty** All, Driver or rider, Passenger and Pedestrian
- Casualty Severity All, Slight, Serious and Fatal

Instructions

1. Zoom in using the map control button or move to the network constrained traffic accident KDE map (top map) to the area which you want to run the analysis. The network constrained casualty KDE map (bottom map) will be updated accordingly.

2. Expand the filters boxes and select the filters.

3. Drag the kernel distance slider to your desired distance.

4. Click on the "Run Analysis" button to run network constrained kernel density estimation analysis.

5. Wait for the application to calculate the network constrained kernel density estimation. There is a progress bar at the bottom right-hand side of the application to show you the progress of the calculation.

×

6. The map will be updated with the network constrained kernel density estimation result.

Network Constrained K- Function

Type of Filters

Time Filters –				
Year 2013 2015 2017 2013 2014 2015 2016 2017				
Month				
Hour 0 0 3 6 9 12 15 18 21 23 0 12 23 0 12 23 0 12 12 12 15 18 21 23 0 12 12 12 12 12 12 12 12 12 12				
Environment Filters -				
Weather Conditions				
Fine without high winds 🔹				
Road Surface				
Dry 🔻				
Casualty Filters –				
Vehicle Class				
Car 💌				
Age Group				
Elderly 🔻				

Type of Casualty

All

All	
Casualty Severity	

Time Filters

The user will be able to filter the data by year, month and hours.

Environment Filters

The user will be able to filter the data by:

- Weather conditions All, Fine without high winds, Fine with high winds, Snowing without high winds, Snowing with high winds, Raining without high winds, Raining with high winds, Fog or mist, unknown and others
- Road Surface All, Dry, Frost / Ice, Wet / Damp, Snow, Others and Flood (surface water over 3cm deep)

Casualty Filters

The user will be able to filter the data by:

- Vehicle Class All, Car, Motorcycle, Bus / Coach, Bicycle, Goods Vehicle, Taxi / Private Hire, Mini Bus, Agricultural Vehicle, Mobility Scooter, Horse and Tram
- Age Group All, Adult, Elderly, Children and Young Adults
- **Type of Casualty** All, Driver or rider, Passenger and Pedestrian
- Casualty Severity All, Slight, Serious and Fatal

Instructions

1. Expand the filters boxes and select the filters.

2. Zoom in using the map controls or move the map to the area which you want to analyse. Ensure that the map area has at least 1 accident point.

3. Drag the slider to state the number of simulations you want to run for the analysis.

4. Click on the "Run Analysis" button to run network constrained k-function analysis.

5. The map box will collapse. =

.

Dimates		
	Network Constrained K-Function	
Network Constrained Kernel Density Estimation	Мар +	Time Filters +
Network Constrained K-Function	Network Constrained K-Function Result -	Environment Filters +
Contraction of the local division of the loc	Is the observed K line (black line) within the grey envelope?	
Cross K-Function	= Aboys	Casualty Filters +
Weinservice .	0 Senstres	
Network Constrained	Analysis foot	
		Number of Simulations
Data Set	Interpret my result	
		and the second se
		Run Analysia

6. Wait for the application to run the calculation. There is a progress bar at the bottom righthand side of the application to show you the progress of the calculation.

7. A graph showing the result of the analysis will appear in the network constrained K-Function result box.

EDDAM.	=			
Overview	Network Constrained K-Function			
Network Constrained Formed Density Estimation	Мар	+	Time Filters	+
Network Constrained K-Function	Network Constrained K-Function Result	-	Environment Filters	+
Network Constrained Cross K-Function Network Constrained	Network-Constrained K-Function	Is the elserved K line (black line) within the grey envelope? Anaps Sometrones O Anaps test	Casualty Filters	•
Cross Pair Correlation Function Data Set	Inviconment Fitters Inviconment Fitters Inviconment Fitters Inviconment Fitters Image in the descreted Kine (black line) within the gree encolopet Image in the descreted Kine (black line) within the gree encolopet Image in the descreted Kine (black line) within the gree encolopet Image in the descreted Kine (black line) within the gree encolopet Image in the descreted Kine (black line) within the gree encolopet Image in the descreted Kine (black line) within the gree encolopet Image in the descreted Kine (black line) within the gree encolopet Image in the descreted Kine (black line) within the gree encolopet Image in the descreted Kine (black line) within the gree encolopet Image in the descreted Kine (black line) within the gree encolopet Image in the descrete Kine (black line) within the gree encolopet Image in the descrete Kine (black line) within the gree encolopet Image in the descrete Kine (black line) within the gree encolopet Image in the descrete Kine (black line) within the gree encolopet Image in the descrete Kine (black line) within the gree encolopet Image in the descrete Kine (black line) within the gree encolopet Image in the descrete Kine (black line) within the gree encolopet Image in the descrete Kine (black line) within the gree encolopet Image in the descrete Kine (black line) within the gree encolopet			
	0 1000 2000 3000 Radius (m)			

8. Select the appropriate option according to the graph and click on "Interpret my result" button

Ø	E		
Overview	Network Constrained K-Function		
Network Constrained Kernel Density Estimation	Мар +	Time Filters	+
Network Constrained K-Function	Network Constrained K-Function Result -	Environment Filters	+
Helsonik Constanned Creat K-Function Helsonik Constanced Creas Net Consisten Function Data Set	Network-Constrained K-Function	Casualty Filtes	•
	a - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

9. A general interpretation of the graph will be shown.

120+44			
Overview	Network Constrained K-Function		
Network Constrained Kernel Density Estimation	Мар	+ Time Filters	÷.
Network Constrained K-Function	Network Constrained K Function Result	- Environment Filters	
Neberah Constrained Cross K-Function Neberah Constrained Cross Part Comiliation Function Data Set	Hetwork-Constrained K-Function	d K Sine (Black Time) within the grey encodeport webge means Class adapt non-within the grey encodeport Teach a	* # D-#

Network Constrained Cross K-Function

Types of Filters

Pedestrian Crossings	•

Variable Filters

The user can choose which variable they want to run the analysis with the traffic accidents. They can choose either Pedestrian Crossings, Motorway Junctions or Schools.

	ype of Casualty	
	All	-
с	asualty Severity	
	All	-

Time Filters

The user will be able to filter the data by year, month and hours.

Environment Filters

The user will be able to filter the data by:

- Weather conditions All, Fine without high winds, Fine with high winds, Snowing without high winds, Snowing with high winds, Raining without high winds, Raining with high winds, Fog or mist, unknown and others
- Road Surface All, Dry, Frost / Ice, Wet / Damp, Snow, Others and Flood (surface water over 3cm deep)

Casualty Filters

The user will be able to filter the data by:

- Vehicle Class All, Car, Motorcycle, Bus / Coach, Bicycle, Goods Vehicle, Taxi / Private Hire, Mini Bus, Agricultural Vehicle, Mobility Scooter, Horse and Tram
- Age Group All, Adult, Elderly, Children and Young Adults
- **Type of Casualty** All, Driver or rider, Passenger and Pedestrian
- Casualty Severity All, Slight, Serious and Fatal

Instructions

1. Choose which variable they want to run the analysis with the traffic accidents.

2. Expand the filters boxes and select the filters.

3. Zoom in using the map controls or move the map to the area which you want to analyse. Ensure that the map area has at least 1 accident point and chosen variable point.

170444		
Overview	Network Constrained Cross K-Function	
Network Constrained Kernel Density Estimation	Мар —	Choose a variable:
Network Constrained K-Function		Pedestrian Crossings •
Network Constrained Cross K-Function		Time Filters +
Network Constrained Cross Pair Correlation Function		Environment Filters +
Data Set		Casualty Filters +
		Number of Simulations
	Cross K Function Result -	Run Analysia
	In the observed Cross-# films (Mark line) within the group enveloped	

4. Drag the slider to state the number of simulations you want to run for the analysis.

5. Click on the "Run Analysis" button to run network constrained cross k-function analysis.

	Network Constrained Cross K-Function		
Network Constrained Kernel Density Estimation	Map -	Choose a variable:	
Network Constrained K-Function		Pedestrian Crossings	•
Network Constrained Cross K-Function		Time Filters	+
Network Constrained Cross Pair Correlation Function		Environment Filters	+
Data Set	Market Legnd	Casualty Filters	*
		Number of Simulations	ж
	Cruss K Function Result –	Run Aralysis	

6. The map box will collapse.

	-		
Derview	Network Constrained Cross K-Function		
Network Constrained Kernel Density Estimation	Мар	•	Choose a variable:
Network Constrained K-Function	Cross K-Function Result	-	Pedestrian Crossings -
Network Constrained Cross K-Function		Is the observed Cross-Kline (black line) within the grey envelope? # Aboys \$ Societizes	Time Filters +
Network Constrained Cross Pair Correlation Function		Absays Not bio Grey Envelope	Environment Filters +
		Interpret my neurit	Casualty Filters +
			Number of Simulations

7. Wait for the application to run the calculation. There is a progress bar at the bottom righthand side of the application to show you the progress of the calculation.

								×
Rui	nnin	g Si	mul	atio	ons.			

10

8. A graph showing the result of the analysis will appear in the network constrained cross K-Function result box.

Deerview	Ietwork Constrained Cross K-Function		
Network Constrained Kernel Density Estimation		+	Choose a variable:
Wetwork Constrained	Cross K Function Result	-	Pedestrian Crossings
www.rk.Constrained roas K-Function etwork Constrained roas Part Comelation Function	Network Constrained Cross K-Function Network Constrained Cross K-Func		Time Filters Environment Filters
a se (8	With product my reack		Casualty Filters

9. Select the appropriate option according to the graph and click on "Interpret my result" button

ESCAN.	=	
Overview	Network Constrained Cross K-Function	
Network Constrained Kernel Density Estimation	Мар +	Choose a variable:
Network Constrained K-Function	Cross K Function Result	Pedestrian Crossings
Network Constrained Cross K-Function	Network Constrained Cross K-Function S	Time Filters +
Network Constrained Cross Pair Correlation Function	No	Environment Filters +
Data Set	Be Convergence)	Casualty Filters +
		Number of Simulations
	Ruški (H)	Run Analysis

10. A general interpretation of the graph will be shown.

Overview	Network Constrained Cross K-Function		
Network Constrained Kernel Density Estimation	Мар	Choose a variable:	
Network Constrained K-Function	Cross K.Function Result	Pedestrian Crossings	•
Network Constrained Crost K Function Network Constrained Cross Pair Constrained Date See	Network Constrained Cross K, Function Is the abserved Cross K (inc) within the gray enveloped in the abserved Cross K (inc) within the abserved Cross K (inc) with	Time Filters Environment Filters	•
	The abserved Cross-Kine's always with a the grey energing. The reacharge reacting the server constrained and the server constrain	Casualty Filters	

Network Constrained Cross Pair Correlation Function

Type of Filters

Choose a variable:	
Pedestrian Crossings	•

Variable Filters

The user can choose which variable they want to run the analysis with the traffic accidents. They can choose either Pedestrian Crossings, Motorway Junctions or Schools.

Time Filters

The user will be able to filter the data by year, month and hours.

Environment Filters -
Weather Conditions
Fine without high winds 🔹
Road Surface
Dry 💌
Casualty Filters -
Vehicle Class
Car 🗸
Age Group
Elderly
Type of Casualty
All
Casualty Severity
All

Environment Filters

The user will be able to filter the data by:

- Weather conditions All, Fine without high winds, Fine with high winds, Snowing without high winds, Snowing with high winds, Raining without high winds, Raining with high winds, Fog or mist, unknown and others
- Road Surface All, Dry, Frost / Ice, Wet / Damp, Snow, Others and Flood (surface water over 3cm deep)

Casualty Filters

The user will be able to filter the data by:

- Vehicle Class All, Car, Motorcycle, Bus / Coach, Bicycle, Goods Vehicle, Taxi / Private Hire, Mini Bus, Agricultural Vehicle, Mobility Scooter, Horse and Tram
- Age Group All, Adult, Elderly, Children and Young Adults
- **Type of Casualty** All, Driver or rider, Passenger and Pedestrian
- Casualty Severity All, Slight, Serious and Fatal

Instructions

1. Choose which variable they want to run the analysis with the traffic accidents.

2. Expand the filters boxes and select the filters.

3. Zoom in using the map controls or move the map to the area which you want to analyse. Ensure that the map area has at least 1 accident point and chosen variable point.

4. Drag the slider to state the number of simulations you want to run for the analysis.

5. Click on the "Run Analysis" button to run Network Constrained Cross Pair Correlation Function analysis.

6. The map box will collapse.

1

-

SIGNAL	-		
Overview	Network Constrained Cross Pair Correlation Function		
Network Constrained Kernel Density Estimation	Map +	Choose a variable:	
Network Constrained K-Function	Cross Pair Correlation Function Result -	Pedestrian Crossings	•
Network Constrained Cross K-Function	Is the Cross Pair Correlation line (black line) within the grey envelope?	Time Filters	+
Network Constrained Cross Pair Correlation Function	Almays Not No Grey Envelope	Environment Filters	+
Data Set	interpret my result	Casualty Filters	
		Number of Simulations	51 99

7. Wait for the application to run the calculation. There is a progress bar at the bottom righthand side of the application to show you the progress of the calculation.

8. A graph showing the result of the analysis will appear in the Network Constrained Cross Pair Correlation Function result box.

9. Select the appropriate option according to the graph and click on "Interpret my result" button

Network Constrained	work Constrained Cross Pair Correlation Function	
Kernel Density Estimation		Choose a variable:
Vetwork Constrained	sss Pair Correlation Function Result	Pedestrian Crossings
Helwork Constrained Cross K-Function	Network Constrained Cross Pair Correlation Function 8 Abuys © J © SomeTress	relation line (Mack line) within the gray or endoge? Time Filtners
etwork Constrained	 Abary Nor No drog trivelog 	Environment Filters
Opposer.		Cassely Filtes
	S	Number of Simulations

10. A general interpretation of the graph will be shown.

