Difference between revisions of "ISSS608 2018-19 T1 Assign Hou Xuelin"

From Visual Analytics and Applications
Jump to navigation Jump to search
(Created page with "== assignment test ==")
 
Line 1: Line 1:
== assignment test ==
+
<!-- BANNER -->
 +
 
 +
[[Image:Articles-public-mineral-baths-sofia-bulgaria-dreamstime.jpg|left|1200px]]
 +
 
 +
<!--MAIN HEADER -->
 +
{|style="background-color:#1B338F;" width="100%" cellspacing="0" cellpadding="0" valign="top" border="0"  |
 +
| style="font-family:Century Gothic; font-size:110%; solid #000000; background:#6A5ACD; text-align:center;" width="25%" |
 +
;
 +
[[T1_Assign_Hou_Xuelin_Overview| <font color="#FFFFFF">Overview</font>]]
 +
 
 +
| style="font-family:Century Gothic; font-size:110%; solid #1B338F; background:#6A5ACD; text-align:center;" width="25%" |
 +
;
 +
[[T1_Assign_Hou_Xuelin_Task1| <font color="#FFFFFF">Task1</font>]]
 +
 
 +
| style="font-family:Century Gothic; font-size:110%; solid #1B338F; background:#6A5ACD; text-align:center;" width="25%" |
 +
;
 +
[[T1_Assign_Hou_Xuelin_Task1| <font color="#FFFFFF">Task2</font>]]
 +
 
 +
| style="font-family:Century Gothic; font-size:110%; solid #1B338F; background:#6A5ACD; text-align:center;" width="25%" |
 +
;
 +
[[T1_Assign_Hou_Xuelin_Task1| <font color="#FFFFFF">Task3</font>]]
 +
|}
 +
<br/>
 +
 
 +
== Background ==
 +
 
 +
 
 +
 
 +
== Motivation ==
 +
 
 +
 
 +
 
 +
 
 +
 
 +
== Objectives ==
 +
 
 +
 
 +
 
 +
== Data Source ==
 +
 
 +
 
 +
 
 +
== Methodology ==
 +
 
 +
==== Exploratory Analysis ====
 +
 
 +
 
 +
 
 +
==== Explanatory Analysis ====
 +
 
 +
 
 +
==== Predictive Analysis ====
 +
 
 +
== Application Libraries & Packages ==
 +
{|class="wikitable"
 +
|-
 +
! Package Name !! Descriptions
 +
|-
 +
| ''TSrepr''  || Methods for representations (i.e. dimensionality reduction, preprocessing, feature extraction) of time series to help more accurate and effective time series data mining. Non-data adaptive, data adaptive, model-based and data dictated (clipped) representation methods are implemented. Also min-max and z-score normalisations, and forecasting accuracy measures are implemented.
 +
|-
 +
 
 +
|}
 +
 
 +
== References ==

Revision as of 22:18, 28 October 2018


Articles-public-mineral-baths-sofia-bulgaria-dreamstime.jpg

Overview

Task1

Task2

Task3


Background

Motivation

Objectives

Data Source

Methodology

Exploratory Analysis

Explanatory Analysis

Predictive Analysis

Application Libraries & Packages

Package Name Descriptions
TSrepr Methods for representations (i.e. dimensionality reduction, preprocessing, feature extraction) of time series to help more accurate and effective time series data mining. Non-data adaptive, data adaptive, model-based and data dictated (clipped) representation methods are implemented. Also min-max and z-score normalisations, and forecasting accuracy measures are implemented.

References