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a b s t r a c t

Clustering is a solution for classifying enormous data when there is not any early
knowledge about classes. With emerging new concepts like cloud computing and big
data and their vast applications in recent years, research works have been increased on
unsupervised solutions like clustering algorithms to extract knowledge from this
avalanche of data. Clustering time-series data has been used in diverse scientific areas
to discover patterns which empower data analysts to extract valuable information from
complex and massive datasets. In case of huge datasets, using supervised classification
solutions is almost impossible, while clustering can solve this problem using un-
supervised approaches. In this research work, the focus is on time-series data, which is
one of the popular data types in clustering problems and is broadly used from gene
expression data in biology to stock market analysis in finance. This review will expose four
main components of time-series clustering and is aimed to represent an updated
investigation on the trend of improvements in efficiency, quality and complexity of
clustering time-series approaches during the last decade and enlighten new paths for
future works.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering is a data mining technique where similar data
are placed into related or homogeneous groups without
advanced knowledge of the groups’ definitions [1]. In detail,
clusters are formed by grouping objects that have maximum
similarity with other objects within the group, and minimum
similarity with objects in other groups. It is a useful approach
for exploratory data analysis as it identifies structure(s) in an
unlabelled dataset by objectively organizing data into similar
groups. Moreover, clustering is used for exploratory data
analysis for summary generation and as a pre-processing
orgi),

idi),
step for other data mining tasks or as a part of a complex
system.

With increasing power of data storages and processors,
real-world applications have found the chance to store and
keep data for a long time. Hence, data in many applications
is being stored in the form of time-series data, for example
sales data, stock prices, exchange rates in finance, weather
data, biomedical measurements (e.g., blood pressure and
electrocardiogram measurements), biometrics data (image
data for facial recognition), particle tracking in physics, etc.
Accordingly, different works are found in variety of domains
such as Bioinformatics and Biology, Genetics, Multimedia
[2–4] and Finance. This amount of time-series data has
provided the opportunity of analysing time-series for many
researchers in data mining communities in the last decade.
Consequently, many researches and projects relevant to
analysing time-series have been performed in various areas
for different purposes such as: subsequence matching,
anomaly detection, motif discovery [5], indexing, clustering,
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classification [6], visualization [7], segmentation [8], identi-
fying patterns, trend analysis, summarization [9], and
forecasting. Moreover, there are many on-going research
projects aimed to improve the existing techniques [10,11].

In the recent decade, there has been a considerable amount
of changes and developments in time-series clustering area
that are caused by emerging concepts such as big data and
cloud computing which increased size of datasets exponen-
tially. For example, one hour of ECG (electrocardiogram) data
occupies 1 gigabyte, a typical weblog requires 5 gigabytes per
week, the space shuttle database has 200 gigabytes and
updating it requires 2 gigabytes per day [12]. Consequently,
clustering craved for improvements in recent years to cope
with this incremental avalanche of data to keep its reputation
as a helpful data-mining tool for extracting useful patterns and
knowledge from big datasets. This review is opportune,
because despite the considerable changes in the area, there is
not a comprehensive review on anatomy and structure of
time-series clustering. There are some surveys and reviews
that focus on comparative aspects of time-series clustering
experiments [6,13–17] but none of them tend to be as
comprehensive as we are in this review. This research work
is aimed to represent an updated investigation on the trend of
improvements in efficiency, quality and complexity of cluster-
ing time-series approaches during the last decade and
enlighten new paths for future works.
1.1. Time-series clustering

A special type of clustering is time-series clustering. A
sequence composed of a series of nominal symbols from a
particular alphabet is usually called a temporal sequence, and
a sequence of continuous, real-valued elements, is known as a
time-series [15]. A time-series is essentially classified as
dynamic data because its feature values change as a function
of time, which means that the value(s) of each point of a
time-series is/are one or more observations that are made
chronologically. Time-series data is a type of temporal data
which is naturally high dimensional and large in data size
[6,17,18]. Time-series data are of interest due to their ubiquity
in various areas ranging from science, engineering, business,
finance, economics, healthcare, to government [16]. While
each time-series is consisting of a large number of data points
it can also be seen as a single object [19]. Clustering such
complex objects is particularly advantageous because it leads
to discovery of interesting patterns in time-series datasets. As
these patterns can be either frequent or rare patterns, several
research challenges have arisen such as: developing methods
to recognize dynamic changes in time-series, anomaly and
intrusion detection, process control, and character recogni-
tion [20–22]. More applications of time-series data are dis-
cussed in Section 1.2. To highlight the importance and the
need for clustering time-series datasets, potentially overlap-
ping objectives for clustering of time-series data are given as
follows:
1.
 Time-series databases contain valuable information that
can be obtained through pattern discovery. Clustering is
a common solution performed to uncover these patterns
on time-series datasets.
2.
 Time-series databases are very large and cannot be handled
well by human inspectors. Hence, many users prefer to deal
with structured datasets rather than very large datasets. As
a result, time-series data are represented as a set of groups
of similar time-series by aggregation of data in non-
overlapping clusters or by a taxonomy as a hierarchy of
abstract concepts.
3.
 Time-series clustering is the most-used approach as an
exploratory technique, and also as a subroutine in more
complex data mining algorithms, such as rule discovery,
indexing, classification, and anomaly detection [22].
4.
 Representing time-series cluster structures as visual
images (visualization of time-series data) can help users
quickly understand the structure of data, clusters,
anomalies, and other regularities in datasets.

The problem of clustering of time-series data is formally
defined as follows:

Definition 1:. Time-series clustering, given a dataset of n
time-series data D¼ F1; F2; ::; Fnf g; the process of unsuper-
vised partitioning of D into C ¼ C1;C2; ::;Ck

� �
, in such a way

that homogenous time-series are grouped together based
on a certain similarity measure, is called time-series clus-
tering. Then, Ci is called a cluster, where D¼ [k

i ¼ 1 Ci and
Ci\Cj ¼∅ for ia j.

Time-series clustering is a challenging issue because first
of all, time-series data are often far larger than memory size
and consequently they are stored on disks. This leads to an
exponential decrease in speed of the clustering process.
Second challenge is that time-series data are often high
dimensional [23,24] which makes handling these data diffi-
cult for many clustering algorithms [25] and also slows down
the process of clustering [26]. Finally, the third challenge
addresses the similarity measures that are used to make the
clusters. To do so, similar time-series should be found which
needs time-series similarity matching that is the process of
calculating the similarity among the whole time-series using
a similarity measure. This process is also known as “whole
sequence matching” where whole lengths of time-series are
considered during distance calculation. However, the process
is complicated, because time-series data are naturally noisy
and include outliers and shifts [18], at the other hand the
length of time-series varies and the distance among them
needs to be calculated. These common issues have made the
similarity measure a major challenge for data miners.

1.2. Applications of time-series clustering

Clustering of time-series data is mostly utilized for dis-
covery of interesting patterns in time-series datasets [27,28].
This task itself, fall into two categories: The first group is the
one which is used to find patterns that frequently appears in
the dataset [29,30]. The second group are methods to discover
patterns which happened in datasets surprisingly [31–34].
Briefly, finding the clusters of time-series can be advantageous
in different domains to answer following real world problems:

Anomaly, novelty or discord detection: Anomaly detection
are methods to discover unusual and unexpected patterns
which happen in datasets surprisingly [31–34]. For example,



Table 1
Samples of objectives of time-series clustering in different domains.

Category Clustering application Research
works

Aviation/
Astronomy

Astronomical data (star light curves) – pre-processing for outlier detection [41]

Biology Multiple gene expression profile alignment for microarray time-series data clustering [42]
Functional clustering of time series gene expression data [43]
Identification of functionally related genes [44–46]

Climate Discovery of climate indices [47,48]
Analysing PM10 and PM2.5 concentrations at a coastal location of New Zealand [49]

Energy Discovering energy consumption pattern [50,51]

Environment and
urban

Analysis of the regional variability of sea-level extremes [52]
Earthquake - Analysing potential violations of a Comprehensive Test Ban Treaty (CTBT) – Pattern discovery and
forecasting

[53,54]

Analysis of the change of population distribution during a day in Salt Lake County, Utah, USA [55]
Investigating the relationship between the climatic indices with the clusters/trends detected based on clustering
method.

[56]

Finance Finding seasonality patterns (retail pattern) [57]
Personal income pattern [58]
Creating efficient portfolio ( a group of stocks owned by a particular person or company) [59]
Discovery patterns from stock time-series [60]
Risk reduced portfolios by analyzing the companies and the volatility of their returns [61]
Discovery patterns from stock time-series [29,62]
Investigate the correlation between hedging horizon and performance in financial time-series. [63]

Medicine Detecting brain activity [64,65]
Exploring, identifying, and discriminating pathological cases from MS clinical samples [66]

Psychology Analysis of human behaviour in psychological domain [67]
Robotics Forming prototypical representations of the robot’s experiences [68,69]
Speech/voice
recognition

Speaker verification [70]
Biometric voice classification using hierarchical clustering [71]

User analysis Analysing multivariate emotional behaviour of users in social network with the goal to cluster the users from a
fully new perspective-emotions

[72]
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in sensor databases, clustering of time-series which are pro-
duced by sensor readings of a mobile robot in order to discover
the events [35].
1-
 Recognizing dynamic changes in time-series: detec-
tion of correlation between time-series [36]. For exam-
ple, in financial databases, it can be used to find the
companies with similar stock price move.
Fig. 1. Time-series clustering taxonomy.
2-
 Prediction and recommendation: a hybrid technique
combining clustering and function approximation per
cluster can help user to predict and recommend [37–40].
For example, in scientific databases, it can address
problems such as finding the patterns of solar magnetic
wind to predict today’s pattern.
3-
 Pattern discovery: to discover the interesting patterns
in databases. For example, in marketing database, differ-
ent daily patterns of sales of a specific product in a store
can be discovered.
Table 1 depicts some applications of time-series data in
different domains.
1.3. Taxonomy of time-series clustering

Reviewing the literature, one can conclude that most of
clustering time-series related works are classified into three
categories: “whole time-series clustering”, “subsequence clus-
tering” and “time point clustering” as depicted in Fig. 1. The
first two categories are mentioned by Keogh and Lin [242] On
behalf of Ali Shirkhorshidi (shirkhorshidi_ali@yahoo.co.uk).
�
 Whole time-series clustering is considered as cluster-
ing of a set of individual time-series with respect to their
similarity. Here, clustering means applying conventional
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(usually) clustering on discrete objects, where objects
are time-series.
�
 Subsequence clustering means clustering on a set of
subsequences of a time-series that are extracted via a
sliding window, that is, clustering of segments from a
single long time-series.
�
 Time point clustering is another category of clustering
which is seen in some papers [74–76]. It is clustering of
time points based on a combination of their temporal
proximity of time points and the similarity of the corre-
sponding values. This approach is similar to time-series
segmentation. However, it is different from segmentation
as all points do not need to be assigned to clusters, i.e.,
some of them are considered as noise.
Essentially, sub-sequence clustering is performed on a
single time-series, and Keogh and Lin [242] represented that

this type of clustering is meaningless. Time-point clustering
also is applied on a single time-series, and is similar to time-
series segmentation as the objective of time-point clustering
is finding the clusters of time-point instead of clusters of
time-series data. The focus of this study is on the “whole
time-series clustering”. A complete review on whole time-
series clustering is performed and shown in Table 4. Review-
ing the literature, it is noticeable that various techniques have
been recommended for the clustering of whole time-series
data. However, most of them take one of the following
approaches to cluster time-series data:
1.
 Customizing the existing conventional clustering algorithms
(which work with static data) such that they become
Fig. 2. The time-series clust
compatible with the nature of time-series data. In this
approach, usually their distance measure (in conventional
algorithms) is modified to be compatible with the raw time-
series data [16].
2.
 Converting time-series data into simple objects (static
data) as input of conventional clustering algorithms [16].
3.
 Using multi resolutions of time-series as input of a
multi-step approach. This approach is discussed further
in Section 5.6.
Beside this common characteristic, there are generally
three different ways to cluster time-series, namely shape-
based, feature-based and model-based.

Fig. 2 shows a brief of these approaches. In the shape-
based approach, shapes of two time-series are matched as
well as possible, by a non-linear stretching and contracting
of the time axes. This approach has also been labelled as a
raw-data-based approach because it typically works directly
with the raw time-series data. Shape-based algorithms
usually employ conventional clustering methods, which
are compatible with static data while their distance/simi-
larity measure has been modified with an appropriate one
for time-series. In the feature-based approach, the raw
time-series are converted into a feature vector of lower
dimension. Later, a conventional clustering algorithm is
applied to the extracted feature vectors. Usually in this
approach, an equal length feature vector is calculated from
each time-series followed by the Euclidean distance mea-
surement [77]. In model-based methods, a raw time-series
is transformed into model parameters (a parametric model
ering approaches.



Fig. 3. An overview of four components of whole time-series clustering.

Fig. 4. Hierarchy of different time-series representation approaches.
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for each time-series,) and then a suitable model distance
and a clustering algorithm (usually conventional clustering
algorithms) is chosen and applied to the extracted model
parameters [16]. However, it is shown that usually model-
based approaches has scalability problems [78], and its
performance reduces when the clusters are close to each
other [79].

Reviewing existing works in the literature, it is implied
that essentially time-series clustering has four components:
dimensionality reduction or representation method, dis-
tance measurement, clustering algorithm, prototype defini-
tion, and evaluation. Fig. 3 shows an overview of these
components.

The general process in the time-series clustering uses
some or all of these components depending on the problem.
Usually, data is approximated using a representation
method in such a way that can fit in memory. Afterwards,
a clustering algorithm is applied on data by using a distance
measure. In the clustering process, usually a prototype is
required for summarization of the time-series. At last, the
clusters are evaluated using criteria. In the following sub-
sections, each component is discussed, and several related
works and methods are reviewed.

1.4. Organization of the review

In the rest of this paper, we will provide a state-of-the-
art review on main components available in time-series
clustering plus the evaluation methods and measures avail-
able for validating time-series clustering. In Section 2, time-
series representation is discussed. Similarity and dissimilar-
ity measures are represented in Section 3. Sections 4 and 5
are dedicated to clustering prototypes and clustering algo-
rithms respectively. In section 6 evaluation measures is
discussed and finally the paper is concluded in Section 7.

2. Representation methods for time series clustering

The first component of time-series clustering explained
here is dimension reduction which is a common solution for
most whole time-series clustering approaches proposed in
the literature [9,80–82]. This section reviews methods of
time-series dimension reduction which is known as time-
series representation as well. Dimensionality reduction repre-
sents the raw time-series in another space by transforming
time-series to a lower dimensional space or by feature
extraction. The reason that dimensionality reduction is
greatly important in clustering of time-series is firstly because
it reduces memory requirements as all raw time-series
cannot fit in the main memory [9,24]. Secondly, distance
calculation among raw data is computationally expensive,
and dimensionality reduction significantly speeds up cluster-
ing [9,24]. Finally, when measuring the distance between two
raw time-series, highly unintuitive results may be garnered,
because some distance measures are highly sensitive to some
“distortions” in the data [3,83], and consequently, by using
raw time-series, one may cluster time-series which are
similar in noise instead of clustering them based on similarity
in shape. The potential to obtain a different type of cluster is
the reason why choosing the appropriate approach for
dimension reduction (feature extraction) and its ratio is a
challenging task [26]. In fact, it is a trade-off between speed
and quality and all efforts must be made to obtain a proper
balance point between quality and execution time.
Definition 2:. Time-series representation, given a time-
series data Fi ¼ f 1; ::; f t ; ::; f T

� �
, representation is transform-

ing the time-series to another dimensionality reduced
vector F'i ¼ f '1; ::; f

'
x

n o
where xoT and if two series are

similar in the original space, then their representations
should be similar in the transformation space too.

According to [83], choosing an appropriate data representa-
tion method can be considered as the key component which
effects the efficiency and accuracy of the solution. High
dimensionality and noise are characteristics of most time-
series data [6], consequently, dimensionality reduction meth-
ods are usually used inwhole time-series clustering in order to
address these issues and promote the performance. Time-
series dimensionality reduction techniques have progressed a
long way and are widely used with large scale time-series
dataset and each has its own features and drawbacks. Accord-
ingly, many researches had been carried out focusing on
representation and dimensionality reduction [84–90]. It is
worth here to mention about the one of the recent compar-
isons on representation methods. H. Ding et al. [91] have
performed a comprehensive comparison of 8 representation
methods on 38 datasets. Although, they had investigated the
indexing effectiveness of representation methods, the results
are advantageous for clustering purpose as well. They use
tightness of lower bounds to compare representation methods.
They show that there is very little difference between recent
representation methods. In taxonomy of representations, there
are generally four representation types [9,83,92,93]: data
adaptive, non-data adaptive, model-based and data dictated
representation approaches as are depicted in Fig. 4.



Table 2
Representation methods for time-series data.

Representation method Complexity Type Comments Introduced
by

Discrete Fourier Transform
(DFT)

O(n(log(n)) Non data adaptive,
Spectral

Usage: [20,108]
Natural Signals
Pros:
No false dismissals.
Cons:
Not support time warped queries

Discrete Wavelet Transform
(DWT)

O(n) Non data adaptive,
Wavelet

Usage: [85,108,109]
stationary signals
Pros:
Better results than DFT
Cons:
Not stable results, Signals must have
a length n¼2some_integer

Singular Value Decomposition
(SVD)

very expensive O(Mn2) Data adaptive Usage: [20,97]
text processing community
Pros:
underlying structure of the data

Discrete Cosine Transformation
(DCT)

a Non data adaptive,
Spectral

- [97]

Piecewise Linear
Approximation (PLA)

O(n log n) complexity for
“bottom up” algorithm

Data adaptive Usage: [86]
natural signals, biomedical
Cons:
Not (currently) indexable, very
expensive
O(n2N)

Piecewise Aggregate
Approximation (PAA)

Extremely Fast O(n) Non data adaptive - [24,90]

Adaptive Piecewise Constant
Approximation (APCA)

O(n) Data adaptive Pros: [87]
Very efficient
Cons:
complex implementation

Perceptually important point
(PIP)

a Non data adaptive Usage: [110]
Finance

Chebyshev Polynomials (CHEB) a Non data adaptive,
Wavelet, Orthonormal

– [99]

Symbolic Approximation (SAX) O(n) Data adaptive Usage: [111]
string processing and bioinformatics
Pros:
Allows Lower bounding and
Numerosity Reduction
Cons:
Discretize and alphabet size

Clipped Data a Data dictated Usage: [83]
Hardware
Cons:
Ultra compact representation

Indexable Piecewise Linear
Approximation (IPLA)

a Non data adaptive - [101]

a Not indicated by authors.
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2.1. Data adaptive

Data adaptive representation methods are performed on
all time-series in datasets and try to minimize the global
reconstruction error [94] using arbitrary length (non-equal)
segments. This technique has been applied in different
approaches such as Piecewise Polynomials Interpolation
(PPI) [95], Piecewise Polynomials Regression (PPR) [96],



Table 3
Similarity measure approaches in the literature.

Distance measure Characteristics Method Defined
by

Dynamic Time Warping
(DTW)

Elastic Measure (one-to-many/one-to-none) Very well in deal with temporal drift. Shape-based [118,119]
Better accuracy than Euclidean distance [129,114,120,90].
Lowe efficiency than Euclidean distance and triangle similarity.

Pearson’s correlation
coefficient and related
distances

Invariant to scale and location of the data points Compression
based
dissimilarity

[124]

Euclidean distance (ED) Lock-step Measure (one-to-one) using in indexing, clustering and classification,
Sensitive to scaling.

Shape-based [20]

KL distance – Compression
based
dissimilarity

[130]

Piecewise probabilistic – Compression
based
dissimilarity

[131]

Hidden Markov models
(HMM)

Able to capture not only the dependencies between variables, but also the serial
correlation in the measurements

Model based [116]

Cross-correlation based
distances

Noise reduction, able to summarize the temporal structure Shape-based [132]

Cosine wavelets – Compression
based
dissimilarity

[126]

Autocorrelation – Compression
based
dissimilarity

[133]

Piecewise normalization It involves time intervals, or “windows,” of varying size. But it is not clear how to
determine these “windows.”

Compression
based
dissimilarity

[125]

LCSS Noise robustness Shape-based [120,121]
Cepstrum A spectral measure which is the inverse Fourier transform of the short-time logarithmic

amplitude spectrum
Compression
based
dissimilarity

[107]

Probability-based distance Able to cluster seasonality patterns Compression
based
dissimilarity

[57]

ARMA – Model based [107,117]
Short time-series distance
(STS)

Sensitive to scaling. Feature-based [44]
Can capture temporal information, regardless of the absolute values

J divergence – Shape-based [53]
Edit Distance with Real
Penalty (ERP)

Robust to noise, shifts and scaling of data, a constant reference point is used Shape-based [134]

Minimal Variance Matching
(MVM)

Automatically skips outliers Shape-based [122]

Edit Distance on Real
sequence (EDR)

Elastic measure (one-to-many/one-to-none), uses a threshold pattern Shape-based [135]

Histogram-based Using multi-scale time-series histograms Shape-based [136]
Threshold Queries (TQuEST) Threshold-based Measure, considers intervals, during which the time-series exceeds a

certain threshold for comparing time-series rather than using the exact time-series
values.

Model based [137]

DISSIM Proper for different sampling rates Shape-based [138]
Sequence Weighted
Alignment model (Swale)

Similarity score based on both match rewards and mismatch penalties. Shape-based [139]

Spatial Assembling Distance
(SpADe)

Pattern-based Measure Model based [140]

Compression-based
dissimilarity measure
(CDM)

In [123] Keogh et al. a parameter-light distance measure method based on Kolmogorov
complexity theory is suggested. Compression-based dissimilarity measure (CDM) is
adopted in this paper.

Compression
based
dissimilarity

[123]

Triangle similarity measure Can deal with noise, amplitude scaling very well and deal with offset translation, linear
drift well in some situations [141].

Shape-based [141]

Dictionary-based
compression

Lang et al. [142] develop a dictionary compression score for similarity measure. A
dictionary-based compression technique is suggested to compute long time-series
similarity

Compression
based
dissimilarity

[142]
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Piecewise Linear Approximation (PLA), Piecewise Constant
Approximation (PCA), Adaptive Piecewise Constant Approx-
imation (APCA) [87], Singular Value Decomposition (SVD)
[20,97], Natural Language, Symbolic Natural Language (NLG)
[98], Symbolic Aggregate ApproXimation (SAX) and iSAX
[84]. Data adaptive representations can better approximate
each series, but the comparison of several time-series is
more difficult.
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2.2. Non-data adaptive

Non-data adaptive approaches are representations which
are suitable for time-series with fix size (equal-length)
segmentation, and the comparison of representations of
several time-series is straightforward. The methods in this
group are Wavelets [85]: HAAR, DAUBECHIES, Coeiflets,
Symlets, Discrete Wavelet Transform(DWT), spectral Cheby-
shev Polynomials [99], spectral DFT [20], Random Mappings
[100], Piecewise Aggregate Approximation (PAA) [24] and
Indexable Piecewise Linear Approximation (IPLA) [101].

2.3. Model based

Model based approaches represent a time-series in a
stochastic way such as Markov Models and Hidden Markov
Model (HMM) [102–104], Statistical Models, Time-series
Bitmaps [105], and Auto-Regressive Moving Average (ARMA)
[106,107]. In the data adaptive, non-data adaptive, and model
based approaches user can define the compression-ratio
based on the application in hand.

2.4. Data dictated

In contrast, in data dictated approaches, the compression-
ratio is defined automatically based on raw time-series such
as Clipped [83,92]. In the following table (Table 2) the most
famous representation methods in the literature are shown.

2.5. Discussion on time series representation methods

Different approaches for representation of time-series
data are proposed in previous studies. Most of these
approaches are focused to speed up the process and reduce
the execution time and mostly they emphasis on indexing
process for achieving to this goal. At the other hand some
other approaches consider the quality of representation, as
an instance in [83], the authors focus on the accuracy of
representation method and suggest a bit level approxima-
tion of time-series. Each time-series is represented by a bit
string, and each bit value specifies whether the data point’s
value is above the mean value of the time-series. This
representation can be used to compute an approximate
clustering of the time-series. This kind of representation
which also referred to as clipped representation has cap-
ability of being compared with raw time-series, but in the
other representations, all time-series in dataset must be
transformed into the same representation in terms of
dimensionality reduction. However, clipped series are the-
oretically and experimentally sufficient for clustering based
on similarity in change (model based dissimilarity measure-
ment) not clustering based on shape. Reviewing the litera-
ture shows that limited works are available for discrete
valued time-series and also it is noticeable that most of
research works are based on evenly sampled data while
limited works addressed unevenly sampled data. Addition-
ally data error is not taken into account in most of research
works. Finally among all of the papers reviewed in this
article, none of them addressed handling multivariate time
series data with different length for each variable.
3. Similarity/dissimilarity measures in time-series
clustering

This section is a review on distance measurement
approaches for time-series. The theoretical issue of time-
series similarity/dissimilarity search is proposed by Agrawal
et al. [108] and subsequently it became a basic theoretical issue
in data mining community. Time-series clustering relies on
distance measure to a high extent. There are different measures
which can be applied to measure the distance among time-
series. Some of similarity measures are proposed based on a
specific time-series representations, for example, MINDIST
which is compatible with SAX [84], and some of them work
regardless of representation methods, or are compatible with
raw time-series. In traditional clustering, distance between
static objects is exactly match based, but in time-series cluster-
ing, distance is calculated approximately. In particular, in order
to compare time-series with irregular sampling intervals and
length, it is of great significance to adequately determine the
similarity of time-series. There is different distance measures
designed for specifying similarity between time-series. The
Hausdorff distance, modified Hausdorff (MODH), HMM-based
distance, Dynamic Time Warping (DTW), Euclidean distance,
Euclidean distance in a PCA subspace, and Longest Common
Sub-Sequence (LCSS) are the most popular distance measure-
ment methods that are used for time-series data. References on
distance measurement methods are given in Table 3. One of the
simplest ways for calculating distance between two time-series
is considering them as univariate time-series, and then calcu-
lating the distance measurement across all time points.

Definition 3:. Univariate time-series, a univariate time-
series is the simplest form of temporal data and is a
sequence of real numbers collected regularly in time, where
each number represents a value [25].

Definition 4:. Time-series distance, let Fi ¼ f i1; ::; f it ;
�

::; f iT g
be a time-series of length T. If the distance between two
time-series is defined across all time points, then distðFi; FjÞ
is the sum of the distance between individual points

distðFi; FjÞ ¼
XT

t ¼ 1

distðf it ; f jtÞ ð3:1Þ

Researches done on shape-based distance measuring of
time-series usually have to challenge with problems such as
noise, amplitude scaling, offset translation, longitudinal
scaling, linear drift, discontinuities and temporal drift which
are the common properties of time-series data, these
problems are broadly investigated in the literature [86].
The choice of a proper distance approach depends on the
characteristic of time-series, length of time-series, repre-
sentation method, and of course on the objective of cluster-
ing time-series to a high extent. This is depicted in Fig. 5.

Typically, there are three objectives which respectively
require different approaches [112].

3.1. Finding similar time-series in time

Because this similarity is on each time step, correlation
based distances or Euclidean distance measure are proper
for this objective. However, because this kind of distance



Fig. 5. Distance measure approaches in the literature.
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measuring is costly on raw time-series, the calculation is
performed on transformed time-series, such as Fourier
transforms, wavelets or Piecewise Aggregate Approximation
(PAA). Keogh and Kasetty [6], have done an comprehensive
review on this matter. Clustering of time-series that are
correlated, (e.g., to cluster time-series of share price related
to many companies to find which shares change together
and how they are correlated) is categorized as clustering
based on similarity in time [83,112].

3.2. Finding similar time-series in shape

The time of occurrence of patterns is not important to
find similar time-series in shape. As a result, elastic meth-
ods [108,113] such as Dynamic time Warping (DTW) [114] is
used for dissimilarity calculation. Using this definition,
clusters of time-series with similar patterns of change are
constructed regardless of time points, for example, to
cluster share price related to different companies which
have a common pattern in their stock independent on its
occurrence in time-series [112]. Similarity in time is an
especial case of similarity in shape. A research has revealed
that similarity in shape is superior to metrics based on
similarity in time [115].

3.3. Finding similar time-series in change (structural
similarity)

In this approach, usually modelling methods such as
Hidden Markov Models (HMM) [116] or an ARMA process
[107,117] are utilized, and then similarity is measured on
the parameters of fitted model to time-series. That is,
clustering time-series with similar autocorrelation struc-
ture, e.g., clustering of shares which have a tendency to
increase after a fall in share price in the next day [112]. This
approach is proper for long time-series, not for modest or
short time-series [21].

Clustering approaches could be classified into two cate-
gories based on the length of time-series: “shape level” and
“structure level”. The “shape level” is usually utilized to
measure similarity in short-length time-series clustering
such as expression profiles or individual heartbeats by
comparing their local patterns, whereas “structure level”
measures similarity which is based on global and high level
structure, and it is used for long-length time-series data
such as an hour’s worth of ECGs or yearly meteorological
data [21]. Focusing on shape-based clustering of short
length time-series, in this study, shape level similarity is
used. Depending on the objective and length of time-series,
the proper type of distance measures is determined. Essen-
tially, there are four types of distance measure in the
literature. Please refer to Table 3 for references on the types
of distance measure. Shape-based similarity measure is to
find the similar time-series in time and shape, such as
Euclidean, DTW [118,119], LCSS [120,121], MVM [122]. It is a
group of methods which are proper for short time-series.
Compression based similarity is suitable for short and long
time-series, such as CDM [123], Autocorrelation, Short time-
series distance [44], Pearson’s correlation coefficient and
related distances [124], Cepstrum [107], Piecewise normal-
ization [125] and Cosine wavelets [126]. Feature based
similarity measure are proper for long time-series, such as
Statistics, Coefficients, Model based similarity is proper for
long time-series, such as HMM [116] and ARMA [107,117].

A survey on various methods for efficient retrieval of
similar time-series were given by Last and Kandel [127].
Furthermore, in [16], authors have presented the formulas
of various measures. Then, Zhang et al. [128] have per-
formed a complete survey on the aforementioned distance
measurements and compared them in different applica-
tions. In Table 3, different measures are compared in terms
of complexity and their characteristics.
3.4. Discussion on distance measures

Choosing an adequately accurate distance measure is
controversial in time-series clustering domain. There are
many distance measure proposed by researchers which
were compared and discussed in Section 3. However, the
following conclusion can be drawn from literature.
1)
 Investigating the mentioned approaches as similarity/
dissimilarity measure, it is implied that the most effec-
tive and accurate approaches are the ones which are
based on dynamic programming (DP) which are very
expensive in time execution (the cost of comparing two
time-series is quadratic in the length of the time-series)
[143]. Although, usually some constraints are taken for
these distance/similarity measurements to mitigate the
complexity [119,144], it needs careful tuning of para-
meters to be efficient and effective. As a result, again, a
trade-off between speed and accuracy should be found
in usage of this metrics. In another view, it is worthwhile
to understand the extent that distance measure is
effective in large scale datasets of time-series. This
matter is not obtained from literature because most of
the considered works are based on rather small datasets.
2)
 In the similarity measure researches, varieties of chal-
lenges are considered pertaining to distance measure-
ment. A big challenge is the issue of incompatibility of
distance metric with the representation method. For
example, one of the common approaches that is applied
to time-series analysis is based upon frequency-domain
[85,109], while using this space, it is difficult to find the
similarity among sequences and produce value-based
differences to be used in clustering.
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3)
 Euclidean distance and DTW are the most common
methods for similarity measure in time-series clustering.
A research has shown that, in terms of time-series classi-
fication accuracy, the Euclidean distance is surprisingly
competitive [145], however, DTW also has its strength in
similarity measurements which cannot be declined.

4. Time-series cluster prototypes

Finding the cluster prototype or cluster representative is
an essential subroutine in time-series clustering approaches
[3,86,112,114,146,147]. One of the approaches to address the
low quality problem in time-series clustering is remedying
the issue of inaccurate prototypes of clusters, especially
in partitioning clustering algorithms such as k-Means,
k-Medoids, Fuzzy C-Means (FCM), or even Ascendant Hier-
archical Clustering which requires a prototype. In these
algorithms, the quality of clusters is highly dependent on
quality of prototypes. Given time-series in a cluster, it is clear
that the cluster’s prototype Rj minimizes the distance between
all time-series in the cluster and its prototype. Time-series Rj

that minimizes E Ci;Rj
� �

is called a Steiner sequence [148].

E Ci;Rj
� �¼ 1

n

Xn

x ¼ 1

distðFx;RjÞ; Ci ¼ F1; F2; ::; Fnf g ð4:1Þ

There are a few methods for calculating prototypes
published in the literature of time-series, however most of
these publications have not proved the correctness of their
methods [149]. But, generally three approaches can be seen
for defining the prototypes:
1.
 The medoid sequence of the set.

2.
 The average sequence of the set.

3.
 The local search prototype.
In following these three approaches are explained and
discussed.

4.1. Using medoid as prototype

In time-series clustering, the most common way to
approach optimal Steiner sequence is to use cluster medoid
as the prototype [150]. In this approach, the centre of a
cluster is defined as a sequence which minimizes the sum of
squared distances to other objects within the cluster. Given
time-series in a cluster, the distance of all time-series pairs
within the cluster is calculated using a distance measure
such as Euclidean or DTW. Then, one of the time-series in
the cluster, which has lower sum of square error is defined
as medoid of the cluster [151]. Moreover, if the distance is a
non-elastic approach such as Euclidean, or if the centroid of
the cluster can be calculated, it can be said that medoid is
the nearest time-series to centroid. Cluster medoid is very
common among works related to time-series clustering and
has been used in many papers such as: [77,150,152,153].

4.2. Using averaging prototype

If the time-series are from equal length, and distance metric
is a none-elastic distance metric (e.g., Euclidean distance) in
clustering process, then the averaging method is a simple
averaging technique which is equal to mean of the time-series
at each point. However, in the case that there are time-series
with different length [149] or in the case which the similarity
between time-series is based on “similarity in shape”, its one-
to-one mapping nature, makes it unable to capture the actual
average shape. For example, in the cases that Dynamic Time
Warping (DTW) or Longest Common Sub-Sequence (LCSS) are
very appropriate [154], averaging prototype is evaded, because
it is not a trivial task. For more evidence, one can see many
works in the literature [86,112,114,146,155,156], which avoid
using elastic approaches (e.g., DTW and LCSS) where there is a
need to use a prototype without providing adequate reasons
(whether the clustering is based on similarity in time or
shape). Two averaging methods using DTW and LCSS are
briefly explained following in this section.

Shape averaging using Dynamic Time Warping (DTW):
in this approach, one method to define the prototype of a
cluster is by combination of pairs of time-series hierarchi-
cally or sequentially. For example, shape averaging using
Dynamic Time Warping, until only one time-series is left
[154]. The drawback of this method is its dependency on the
ordering of choosing pairs which results in different final
prototypes [2]. Another method is the approach mentioned
by Abdulla and Chow [157], where authors proposed a
cross-words reference template (CWRT), where at first, the
medoid is find as the initial guess, then all sequences are
aligned by DTW to the medoid, and then the average time-
series is computed. The resulting time-series has the same
length as the medoid, but the method is invariant to the
order of processing sequences [77]. In another study, the
authors present a global averaging method for defining the
prototypes [158]. They use an averaging approach where
the distance method for clustering or classification is DTW.
However, its accuracy is dependent on the length of the
initial average sequence and value of its coordinates.

Shape averaging using Longest Common Sub-Sequence
(LCSS): the longest common subsequence [159] generally
permits to make a summary of a set of sequences. This
approach supports the elastic distances and unequal size
time-series. Aghabozorgi et al. [160] and Aghabozorgi, Wah,
Amini, and Saybani [161] propose a fuzzy clustering approach
for time-series clustering, and utilize the averaging method by
LCSS as prototype.
4.3. Using local search prototype

In this approach, at first the medoid of cluster is com-
puted, then using averaging method (Section 4.2), averaged
prototype is calculated based on warping paths. Afterward,
new warping paths are calculated to the averaged prototype.
Hautamaki et al. [77] propose a prototype obtained by local
search, instead of medoid to overcome the poor quality in
time-series clustering in Euclidean space. They apply medoid,
average and local search on k-Medoids, Random Swap (RS)
and Agglomerative Hierarchical clustering (where k-means is
used to fine-tune the output) to evaluate their work. They
figured out that local search provides the best clustering
accuracy and also more improvement to k-Medoids. However,
it is not clear how much improvement it has in comparison
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with other works such as medoid averaging methods which
are another frequently used prototype.

4.4. Discussion

One of the problems which lead to low accuracy of
clusters is poor definition or updating method of prototypes
in time-series clustering process, especially in partitioning
approaches. Many clustering algorithms suffer from low
accuracy of representation methods [77,149]. Moreover, the
inaccurate prototype can affect convergence of clustering
algorithms which results in low quality of obtained clusters
[149]. Different approaches of defining prototypes were
discussed in Section 4. In this study, the averaging approach
is used in order to find the prototypes of the sub-clusters
because the used distance metric is a none-elastic distance
metric (ED). Although for the merging purpose, an arbitrary
method can be used if it is compatible with elastic methods
such as [158], however for different schemes the simple
“medoid” is used as prototype to be compatible with the
elasticity of distance metric DTW, with k-Medoids algo-
rithm, and also to provide fair condition for evaluation of
the proposed model with existing approaches.

5. Time-series clustering algorithms

In this section, the existing works related to clustering of
time-series data are concentrated and discussed. Some of
them are using raw time-series and some try to use
reduction methods before clustering of time-series data.
As it is demonstrated in Fig. 6, generally clustering can be
broadly classified into six groups: Partitioning, Hierarchical,
Grid-based, Model-based, Density-based clustering and
Multi-step clustering algorithms. In the following, the
application of each group in time-series clustering is dis-
cussed in detail.

5.1. Hierarchical clustering of time-series

Hierarchal clustering [150] is an approach of cluster analysis
which makes a hierarchy of clusters using agglomerative or
divisive algorithms. Agglomerative algorithm considers each
item as a cluster, and then gradually merges the clusters
(bottom-up). In contrast, divisive algorithm starts with all
objects as a single cluster and then splits the cluster to reach
the clusters with one object (top-down). In general, hierarch-
ical algorithms are weak in terms of quality because they
cannot adjust the clusters after splitting a cluster in divisive
method, or after merging in agglomerative method. As a result,
usually hierarchical clustering algorithms are combined with
another algorithm as a hybrid clustering approach to remedy
this issue. Moreover, some extended works are done to
improve the performance of hierarchical clustering such as
Fig. 6. Clustering
Chameleon [162], CURE [163] and BIRCH [164] where the
merge approach is enhanced or constructed clusters are
refined.

Similarly in hierarchical clustering of time-series, nested
hierarchy of similar groups is generated based on a pair-wise
distance matrix of time-series [165]. Hierarchical clustering has
a great visualization power in time-series clustering [86,166]
which makes it an approach to be used for time-series
clustering to a great extent. For example, Oates, Schmill, and
Cohen [167] use agglomerative clustering to produce the
clusters of the experiences of an autonomous agent. They
use Dynamic Time Warping (DTW) as a dissimilarity measure
with a dataset containing 150 trials of real Pioneer data in a
variety of experiences. In another study by Hirano and
Tsumoto [168], the authors use average linkage agglomerative
clustering which is a type of hierarchical approach for time-
series clustering. Moreover, in many researches, hierarchical is
used to evaluate dimensionality reduction or distance metric
due to its power in visualization. For example, in a study [9],
the authors presented Symbolic Aggregate Approximation
(SAX) representation and they used hierarchical clustering to
evaluate their work. They show that using SAX, hierarchical
clustering has a result similar with Euclidean distance.

Additionally, in contrast to most algorithms, hierarchy
clustering does not require the number of clusters as an
initial parameter which is a well-known and outstanding
feature of this algorithm. It is also a strength point in time-
series clustering, because usually it is hard to define the
number of clusters in real world problems. Moreover,
despite many algorithms, hierarchical clustering has the
ability to cluster time-series with unequal length. It is
possible to cluster unequal time-series using this algorithm
if an appropriate elastic distance measure such as Dynamic
Time Warping (DTW) [118,119] or Longest Common Sub-
sequence (LCSS) [120,121] is used to compute the dissim-
ilarity/similarity of time-series. In fact the reality that
prototypes are not necessary in its process has made this
algorithm capable to accept unequal time-series. However,
hierarchical clustering is essentially not capable to deal
effectively with large time-series [21] due to its quadratic
computational complexity and accordingly, it leads to be
restricted to small datasets because of its poor scalability.

5.2. Partitioning clustering

A partitioning clustering method makes k groups from n
unlabelled objects in the way that each group contains at
least one object. One of the most used algorithms of parti-
tioning clustering is k-Means [169] where each cluster has a
prototype which is the mean value of its objects. The main
idea behind k-Means clustering is the minimization of the
total distance (typically Euclidian distance) between all
objects in a cluster from their cluster center (prototype).
approaches.



Table 4
Whole time-series clustering algorithms.

Article Representation
method

Distance measurement Clustering algorithm Comments (P:Positive, N:Negative)

Košmelj and Batagelj
[50]

Raw time-series Euclidean Modified relocation
clustering

P: Multiple variable support

Golay et al. [132] Raw time-series Euclidean and two cross
correlation-based

FCM P: Noise Robustness

Kakizawa, Shumway,
and Taniguchi [192]

Raw time-series J divergence Agglomerative
hierarchical

P: Multiple variable support

Van Wijk and Van
Selow [166]

Raw time-series Root mean square Agglomerative
hierarchical

N: Single variable, using raw time-series

Policker and Geva
[193]

Raw time-series Euclidean Fuzzy clustering N: Single, using raw time-series

Qian, Dolled-Filhart,
Lin, Yu, and Gerstein
[194]

Raw time-series Ad hoc distance Single-linkage N: using raw time-series Sensitive to noise

Kumar and Patel [57] Raw time-series Gaussian models of data
errors

Agglomerative
hierarchical

–

Liao et al. [152] Raw time-series DTW and Kullback–
Liebler distance

k-Medoids-based
genetic clustering

P: Support unequal time-series N: Single variable
support Sensitive to noise

Wismüller et al. [64] Raw time-series nnn Neural network
clustering

N: Single variable support, using raw time-series

Möller-Levet,
Klawonn, Cho, and
Wolkenhauer [44]

piecewise linear
function

STS Modified FCM –

Vlachos, Lin, and
Keogh [165]

DWT (Discrete
Wavelet Transform)
Haar wavelet

Euclidean k-means, P: Incremental N: Sensitive to noise

Shumway [53] Raw time-series Kullback–Leibler
discrimination
information Measures

Agglomerative
hierarchical

P: Multiple variable support

Lin, Vlachos, Keogh,
and Gunopulos [18]

Wavelets. Euclidean Distance partitioning
clustering, k-Means
and EM

P: Incremental N: Sensitive to noise

Z.J. Wang and Willett
[195]

Raw time-series GLR (generalized
likelihood ratio)

two stages approach N: Subsequence Segmentation. Sensitive to noise

[111] SAX compression-based
distance

Hierarchy N: Sensitive to noise

X. Wang, Smith, and
Hyndman [196]

global characteristics Euclidean SOM N: Only focus on dimensionality reduction
method Sensitive to noise

Ratanamahatana,
Keogh, Bagnall, and
Lonardi [83]

BLA (clipped time-
series representation)

LB_clipped k-means N: Sensitive to noise

Focardi and others
[197]

Raw time-series 3 types of distances – N: Using Raw time-series Sensitive to noise

Abonyi, Feil, Nemeth,
and Arva [198]

PCA SpCA Factor Hierarchical P: Anomaly detection N: Sensitive to noise

Tseng and Kao [199] gene expression Euclidean distance,
Pearson’s correlation

Modified CAST P: Focus on clustering N: Sensitive to noise

Bagnall and Janacek
[112]

Clipped Euclidean k-Means, k-Medoids –

Liao [200] SAX Euclidean and
symmetric version of
Kullback–Liebler

k-Means and fuzzy c-
Means

P: Multiple variable support Support unequal
time-series

Ratanamahatana and
Niennattrakul [4]

Raw time-series Dynamic Time Warping k-Means, k-Medoids P: Noise Robustness N: using raw time-series

Bao [201] Bao and
Yang [202]

a critical point model
(CPM)

– turning points P: Using important points

Lin, Keogh, Wei, and
Lonardi [84]

ESAX Min-Distance Partitioning Hierarchal N: Only focus on distance measurement Sensitive
to noise

Hautamaki et al. [77] Raw time-series DTW K-mean, Hierarchical,
RS

P: Only was compared with medoid Support
unequal time-series

Guo, Jia, and Zhang
[60]

feature-based using
ICA

– modified k-means N: Sensitive to noise

Liu and Shao [203] SAX trend statistics distance Hierarchical P: Using symbolized TS
Fu, Chung, Luk, and
Ng [204]

PIP (perceptually
important points)

Vertical distance k-Means P: incremental Support unequal time-series N:
Only indexing Sensitive to noise

Lai, Chung, and Tseng
[205]

SAX, Raw time-series Min-Dist, Eucleadian
distance

Two-level clustering:
CAST,CAST

P: Support unequal time-series N: Based on
subsequence,CAST is poor in front of huge data
Sensitive to noise
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Table 4 (continued )

Article Representation
method

Distance measurement Clustering algorithm Comments (P:Positive, N:Negative)

Gullo, Ponti, Tagarelli,
Tradigo, and Veltri
[66]

DSA DTW k-Means –

Zhang [206] Raw time-series triangle distance Hierarchical –

Aghabozorgi [161] Discrete Wavelet
Transform (DWT)

Longest Common Sub-
Sequence (LCSS)

Fuzzy c-Means
Clustering (FCM)

P: Flexibility and accuracy

Zakaria [207] Shapelets length-normalized
Euclidean distance

k-Means P: Cluster time-series of different lengths

Darkins [208] Gaussian process data
model

Dirichlet Process Model
(DPM)

Bayesian Hierarchical
Clustering (BHC)

–

Ji [48] Raw time-series Euclidean Distance (ED) Fuzzy c-Means
Clustering (FCM)

P: Dynamic nature of algorithm

Seref [209] Raw time-series Arbitrary pairwise
distance matrices

DKM-S (Modified
Discrete k-Median
Clustering)

–

Ghassempour [210] Hidden Markov
Models (HMMs)

KL-Distance PAM (Partitioning
Around Medoids)

P: Support categorical and continues values

Aghabozorgi [211] Piecewise Aggregate
Approximation (PAA)

Euclidean distance and
Dynamic Time Warping

Hybrid, k-
MedoidsþHierarchical

P: Better accuracy over traditional clustering
algorithms
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Prototype in k-Means process is defined as mean vector of
objects in a cluster. However, when it comes to time-series
clustering, it is a challenging issue and is not trivial [149].
Another member of partitioning family is k-Medoids (PAM)
algorithm [150], where the prototype of each cluster is one of
the nearest objects to the centre of the cluster. Moreover,
CLARA and CLARANS [170] are improved version of k-Medoid
algorithm for mining in spatial databases. In both k-Means
and k-Medoids clustering algorithms, number of clusters, k,
has to be pre-assigned, which is not available or feasible to be
determined for many applications, so it is impractical in
obtaining natural clustering results and is known as one of
their drawbacks in static objects [21] and also time-series
data [15]. It is even worse in time-series because the datasets
are very large and diagnostic checks for determining the
number of clusters is not easy. Accordingly, authors in [171]
investigate the role of choosing correct initial clusters in
quality and time-execution of k-Means in time-series cluster-
ing. However, k-Means and k-Medoids are very fast compared
to hierarchical clustering [169,172] and it has made them very
suitable for time-series clustering and has been used in many
works [18,60,77,112,173].

k-Means and k-Medoids algorithms make clusters which
are constructed in ‘hard’ or ‘crispy’ manner and it means
that an object is either a member of a cluster or not. On the
other hand, FCM (Fuzzy c-Means) algorithm [174,175] and
Fuzzy c-Medoids algorithm [176] build ‘soft’ clusters. In
fuzzy clustering, an object has a degree of membership in
each cluster [177]. Fuzzy partitioning algorithms have been
used for time-series clustering in some areas. For example,
in [70], authors use FCM (Fuzzy c-Means) to cluster time-
series for speaker verification. In another work [178], the
authors use fuzzy variant to cluster similar object motions
that were observed in a video collection. They adopt an EM-
based algorithm and a mixture of HMMs to cluster time-
series data. Then, each time-series is assigned to each
cluster to a certain degree. Moreover, using FCM, authors
in [132] cluster MRI time-series of brain activities. They use
raw univariate time-series of equal length. As distance
metric, they use Euclidian distance and cross-correlation.
They evaluate their work with different numbers of clusters
(k) and recommend using a large number of clusters as
initial clusters. However, it is not defined how they achieve
the optimal number of clusters in this work.

Generally, partitioning approaches, whether crispy or
fuzzy, need defining prototypes and their accuracy are
directly depends on the definition of these prototypes and
their updating method. Hence, they are more compatible
with finding clusters of similar time-series in time and
preferably with equal length time-series because defining
the prototype for elastic distance measures which handle
the similarity in shape is not very straight forward which is
discussed in Section 4.

5.3. Model-based clustering

Model-based clustering attempts to recover the original
model from a set of data. This approach assumes a model for
each cluster, and finds the best fit of data to that model. In
detail, it presumes that there are some centroids chosen at
random, and then some noise is added to them with a normal
distribution. The model that is recovered from the generated
data defines clusters [179]. Typically, model-based methods
use either statistical approaches, e.g., COBWEB [180], or Neural
Network approaches, e.g., ART [181] or Self-Organization Map
[182]. In some of works in time-series clustering area, authors
use Self-Organizing Maps (SOM) for clustering of time-series
data. As mentioned, SOM is a model-based clustering based on
neural networks, which is similar to processing that happens
in the brain. For example, in [25], authors use SOM to cluster
time-series features. However, because SOM needs to define
the dimension of weight vector, it cannot work well with time-
series of unequal length [16]. Additionally, there are a few
articles which use model based clustering of time-series data
which are composed of polynomial models [112], Gaussian
mixed models [183], ARIMA [106], Markov chain [68] and
Hidden Markov models [184,185]. In general, model based
clustering has two drawbacks: first, it needs to set parameters
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and it is based on user assumptions which may be false and
consequently the result clusters would be inaccurate. Second, it
has a slow processing time (especially neural networks) on
large datasets [186].

5.4. Density-based clustering

In density based clustering, clusters are subspaces of
dense objects which are separated by subspaces in which
objects have low density. One of the famous algorithms
which works by density-based concept is DBSCAN [187]
where a cluster is expanded if its neighbours are dense.
OPTICS [188] is another density-based algorithm which
addresses the issue of detecting meaningful clusters in data
of varying density. The model proposed by Chandrakala and
Chandra [189] is one of the rare cases, where the authors
propose a density based clustering method in kernel feature
space for clustering multivariate time-series data of varying
length. Additionally they present a heuristic method of
fnding the initial values of the parameters used in their
proposed algorithm. However, reviewing the literature it is
noticeable that density-based clustering has not been used
broadly for time-series data clustering because of its rather
high complexity.

5.5. Grid-based clustering

The grid-based methods quantize the space into a finite
number of the cells that form a grid, and then perform
clustering on the grid’s cells. STING [190] and Wave Cluster
[191] are two typical examples of clustering algorithms
which are based on grid-based concept. To the best of our
knowledge, there is no work in the literature applying grid-
based approaches for clustering of time-series. In Table 4 a
summary of related works are mentioned based on the
adopted representation method, distance measure, cluster-
ing algorithm and if it is applicable, definition of prototype.

Considering many works, it was understood that in most
of models, the authors use time-series data as raw data or
dimensionality reduced data, with standard traditional
clustering algorithms. It is obvious that this type of analyz-
ing time-series which use a brute-force approach without
any optimization is a proper solution for scientific theories,
but not for real world problems, because they are naturally
very slow or inaccurate in large data bases. As a result, in
many studies the attention of the researchers has drawn to
using more customized algorithms for time-series data
clustering as the ultimate solution.

In the following section, specific approaches are dis-
cussed and emphasize is on the solutions which are
addressing the low quality of time-series clustering pro-
blems due to the mentioned issues in process of clustering.

5.6. Multi-step clustering

Although there are many studies to improve the quality
of representation approaches, distance measurement, and
prototypes, a few articles emphasis on enhancing algo-
rithms and present a new model (usually as a hybrid
method) for clustering of time-series data. In the following
the most related works are presented and discussed:
1.
 Cheng-Ping Lai et al. [205] describe the problem of over-
looking of information using dimension reduction. They
claim that overlooked information could provide different
meaning in time-series clustering results. To solve this
issue, they adopt a two-level clustering method, where
both the whole time-series and the subsequence of time-
series are taken into account in the first and second level
respectively. They used SAX transformation as dimension
reduction method and CAST as clustering algorithm in the
first level in order to group first-level data. In the second
level, to measure distances between time-series, Dynamic
Time Warping (DTW) has been used for varying length
data, and Euclidean distance for equal length data. Finally,
second-level data, of all the time-series, are then grouped
by a clustering algorithm.
In this study, the distance measure method used in order
to find the first level result, is not clear while it is of great
importance, because, for example, if the length of time-
series are different (which is a possible case), it will effect
on choosing dimension reduction and distance measure-
ment methods. Another issue is that the authors have
used CAST algorithm in their proposed approach for two
times, once for making initial clusters, then for splitting
each cluster into sub-clusters (although they used it 3
times in pseudo code). However, using CAST algorithm
needs determining the threshold of affiliation which is a
very sensitive parameter in this algorithm [212]. Addition-
ally in this work, more granulated time-series are clus-
tered which is actually based on the sub-sequence
clustering. However, the work done by Keogh and Lin
[73] indicates that subsequence clustering is meaningless.
The authors in that work define “meaningless” as when
the clustering output is independent of the input. And
finally, their experimental result is not based on the
published datasets in the literature. Therefore, there is
not a way to compare their method with existing
approaches for time-series clustering.
2.
 The authors in [206] also propose a new multi-level
approach for shape based time-series clustering. In the
first step, some candidate time-series are chosen from a
made one-nearest neighbour network. In order to make
the network of time-series, authors propose triangle
distance for calculating similarity between time-series
data. Then, hierarchical clustering is performed on cho-
sen candidate time-series. To handle the shifts in time-
series, Dynamic Time Warping (DTW) is utilized in the
second step of clustering. Using this approach the size of
data is reduced by approximately ten per cent.
One of the issues in this algorithm is that it needs a
nearest-neighbour network in the first level while com-
plexity of making the nearest-neighbour network is O
(n2) which is very high. As a result, they try to reduce the
search area by using k-Means as pre-clustering of data
and limit the search only in each cluster to reduce the
cost of network creation. However, because raw time-
series is used in the process of pre-clustering to reduce
the size of data, making the network itself is still very
costly. As a result, the complexity of whole clustering is
high which is not applicable on large datasets.
Another problem is that pre-clusters developed in this
model may not be accurate because the pre-clusters are
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constructed by a non-elastic distance measure on raw
time-series and it may be affected by outliers.
Although the experimental results are based on two
syntactic datasets, however, the results should be tested
on more datasets [6] because characteristics of time-series
varies in different data-sets from different domains.
Finally, the error rate of choosing the candidates is
computed but the quality of the final clusters has not
measured using any standard and common metrics to be
comparable with other methods.
3.
 In a group of works, an incremental clustering approach
is adopted which exploit the multi-resolution character-
istic of time-series data to cluster them in multi-step, for
instance, Vlachos et al. [165] developed a method based
on standard k-Means and Discrete Wavelet Transform
(DWT) decomposition to cluster time-series data. They
extended the k-Means algorithm to perform clustering of
time-series incrementally at different resolutions of
DWT decomposition. At first, they use Haar wavelet
transformations to decompose all the time-series. After
that, they apply the k-Means clustering on various
regulations from a chaos to a finer level. At the end of
each level, the extracted centers are reused as the initial
centers for the next level of resolution. They doubled the
center coordinates of each level because the length of a
time-series is doubled in next level. In this algorithm,
more and more detail are used during the clustering
process. In order to compute the clustering error, they
computed clustering error at the end of each level by
summing up the number of objects clustered incorrectly
divided by the cardinality of the dataset. In another
similar work, Lin et al. [18] generalized this work and
presented an anytime version of the partitioned cluster-
ing algorithm (k-mean and EM) for time-series. In this
method also, authors use the multi-resolution property
of wavelets in their algorithm. Following these works,
Lin et al. in [213] present a multi-resolution clustering
approach based on multi-resolution PAA (MPAA) for the
incremental clustering algorithm of time-series.
Considering speed of clustering these approaches are
quite good, however, in all these models, it is not clear
that to what level it should be continued (the termina-
tion point). Additionally, in each iteration, all the time-
series which are in the same resolution are re-clustered
again. Therefore, the noise in some of them can affect the
whole process. Moreover, this model is applicable only
for partitioning clustering, which implies that it is not
working for other types of algorithms such as arbitrary
shape algorithms or hierarchical algorithms in the case
where user needs the structure of data (the hierarchy of
clusters). Another problem which these models should
resolve is working with distance measures such as DTW
which at first, are very costly and cannot be applied on
whole dataset, and secondly, defining the prototypes
using them is not a trivial task.
4.
 A new approach presented recently by Aghabozorgi and
Wah [62] on co-movement of the stock market by using
a three-phase method: (1) pre-clustering of time series;
(2) purifying and summarization; and (3) merging. This
new 3-PhaseTime series Clustering model (3PTC), can
construct the clusters based on similarity in shape. This
model facilitates the accurate clustering of time series
data sets and is designed specifically for very large time
series data sets. In the first phase of the model, data are
pre-processed, transformed into a low dimensional
space, and grouped approximately. Then, the pre-
clustered time series are refined in the second phase
using an accurate clustering method, and are repre-
sented by some prototypes. Finally, in the third phase,
the prototypes are merged to construct the ultimate
clusters. To evaluate the accuracy of the proposed model,
the 3PTC is tested extensively using published time
series data sets from diverse domains. results show the
advantage of the proposed method wherein the analysis
allows better prediction and understanding of the co-
movement of companies even with local shifts.
5.
 In another work [211], a hybrid clustering algorithm
called Two-step Time series Clustering (TTC) algorithm
is proposed based on the similarity in shape of time
series data. In this method, time series data are first
grouped as subclusters based on similarity in time.The
subclusters are then merged using the k-Medoids algo-
rithm based on similarity in shape.This model has two
contributions, first it is more accurate than other con-
ventional and hybrid approaches and second, it deter-
mines the similarity in shape among time series data
with a low complexity. To evaluate the accuracy of the
proposed model, the model is tested extensively using
syntactic and real-world time series datasets. The resutls
in the experiments with various datasets and with
different evaluation methods, show that TTC outper-
forms other conventional and hybrid clustering.

6. Time-series clustering evaluation measures

In this section evaluation method for clustering algorims
are discussed. Keogh and Kasetty [6] have made an inter-
esting research on different articles in time-series mining
and conclude that the evaluation of time-series mining
should follow some disciplines which are recommended as:
�
 The validation of algorithms should be performed on
various ranges of datasets (unless the algorithm is
created only for a specific set). The used dataset should
be published and freely available
�
 Implementation bias must be avoided by careful design
of the experiments
�
 If possible, data and algorithms should be freely provided

�
 New methods of similarity measures should be compared

with simple and stable metrics such as Euclidean distance.
In general, evaluating of extracted clusters is not easy in
the absence of data labels [26] and it is still an open
problem. The definition of clusters depends on the user,
the domain, and it is subjective. For example, the number of
clusters, the size of clusters, definition for outliers, and
definition of the similarity among the time-series in a
problem are all the concepts which depend on the task at
hand and should be declared subjectively. These have made
the time-series clustering a big challenge in the data mining
domain. However, owing to the classified data labelled by
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human judge or by their generator (in synthetic datasets),
the result can be evaluated by using some measures. The
label of human judge is not perfect in terms of clustering
raw data, but in practice it captures the strengths and
shortcomings of the algorithms as ground truth. To evaluate
MTC, the datasets are used from different domains which
their labels are known. Fig. 7 shows the process for evalua-
tion of a new model in time-series clustering.

Rand Index, Adjusted Rand Index, Entropy, Purity, Jacard,
F-measure, FM, CSM, and MNI are used for the evaluation of
MTC. All of these clustering evaluation criteria have values
ranging from 0 to 1, where 1 corresponds to the case when
ground truth and finding clusters are identical (except
Entropy which is conversed and called cEntropy). Thus, here,
bigger criteria values are preferred. Each of the mentioned
evaluation criterion has its own benefit and there is no
consensus of which criterion is better than other in the data
mining community. Regarding to the time-series clustering
algorithms, the evaluation measures employed in the differ-
ent approaches are discussed in this section. Visualization and
scalar measurements are the major technique for evaluation
of clustering quality which also is known as clustering validity
in some articles [214]. The techniques to evaluate any newly
proposed model are explained in the following sections as is
depicted in Fig. 8.

In scalar accuracy measurements, a single real number is
generated to represent the accuracy of different clustering
methods. Numerical measures that are applied to judge
various aspects of cluster validity are classified into two types:

External Index: this index is used to measure the
similarity of formed clusters to the externally supplied class
labels or ground truth, and is the most popular clustering
evaluation method [215]. In the literature, this index is
known also as external criterion, external validation, extrin-
sic methods, and supervised methods because the ground
truth is available.

Internal Index: this index is used to measure the goodness
of a clustering structure without respect to external information.
In the literature, this index is known also as internal criterion,
internal validation, intrinsic and unsupervised methods.

These evaluation techniques are discussed in the rest of
this section.

6.1. External index

External validity indices are the measures of the agree-
ment between two partitions, one of which is usually a
Fig. 7. Experimental e
known/golden partition which is also known as ground
truth (e.g., true class labels), and another is from the
clustering procedure. Ground truth is the ideal clustering
that is often built using human experts. In this type of
evaluation, ground truth is available, and the index evalu-
ates how well the clustering matches the ground truth
[216]. Complete reviews and comparisons of some popular
techniques exist in the literature [217–220]. However, there
is not a compromise and universally accepted technique to
evaluate clustering approaches, though there are many
candidates which can be discounted for a variety of reasons.
For external indices, usually match corresponding clusters
and information theoretic are used as approach. Based on
these approaches, many indices are presented in different
articles [217,221].

Cluster purity: one of the ways to measure the quality of
a clustering solution is cluster purity [222]. Purity is a
simple and transparent evaluation measure. Considering
G¼ fG1;G2; …; GMg as ground truth clusters, and C ¼
fC1;C2; …; CMg as the clusters made by a clustering algo-
rithm under evaluations, in order to compute the purity of
cluster C with respect to G, each cluster is assigned to
the class which is most frequent in the cluster, and then the
accuracy of this assignment is measured by counting the
number of correctly assigned objects and dividing by
valuation of MTC.
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number of objects in the cluster. A bad clustering has purity
value close to 0, and a perfect clustering has a purity of 1.
However, high purity is easy to achieve when the number of
clusters is large, in particular, purity is 1 if each objects gets
its own cluster. Thus, one cannot only rely on purity as the
quality measure. Purity was used for evaluation of time-
series clustering in different studies [4,21].
�
 Cluster Similarity Measure (CSM): CSM [16] is a simple
metric used for validity of clusters in time-series domain
[18,26,107,223].
�
 Folkes and Mallow index (FM): This metric is the index
for computing the accuracy of time-series clustering in
multimedia domain [26,83].
�
 Jaccard Score: Jaccard [224] is one of the metrics that has
been used in various studies as external index [22,26,83].
�
 Rand index (RI): A popular quality measure [22,26,83]
for evaluation of time-series clusters is the Rand index
[225,226], which measures the agreement between two
partitions and shows how much clustering results are
close to the ground truth.
�
 Adjusted Rand Index (ARI): RI does not take a constant
value (such as zero) two random clustering. Hence, in
[227], authors suggest a corrected-for-chance version of
the RI which works better than RI and many other
indices [228,229]. This approach was used in gene
expression domain successfully [230,231].
�
 F-measure: F-measure [232] is a well-established mea-
sure for assessing the quality of any given clustering
solution with respect to ground truth. F-measure com-
pares how closely each cluster matches a set of categories
of ground truth. F-measure has been used in clustering of
time-series data [22,66,233,234] and in natural language
processing for evaluating clustering [235].
�
 Normalized Mutual Information (NMI): as mentioned,
high purity in the large number of clusters is a drawback
of purity measure. In order to make trade-off between the
quality of the clustering against the number of clusters,
NMI [236] is utilized as quality measure.in various studies
[26,237,238]. Moreover, NMI can be used to compare
clustering approaches with different numbers of clusters,
because this measure is normalized [216].
�
 Entropy: entropy [239,240] of a cluster shows how
dispersed classes are with a cluster (this should be
low). Entropy is a function of the distribution of classes
in the resulting clusters.

In short, one of the most popular approaches for quality
evaluation of clusters is external indices to find how good the
finding cluster results are [215] which also is used for
evaluation of the proposed models in this study. However, it
is not directly applicable in real-life unsupervised tasks,
because the ground truth is not available for all datasets.
Therefore, in the case that ground truth is not available,
internal index is used which is discussed in following section.
6.2. Internal index

Typical objective functions in clustering, formalize the goal
of attaining high intra-cluster similarity (objects within a
cluster are similar) and low inter-cluster similarity (objects
from different clusters are dissimilar). Internal validation
compares solutions based on the goodness of fit between each
clustering and the data. Internal validity indices evaluate
clustering results by using only features and information
inherent in a dataset. They are usually used in the case that
true solutions (ground truth) are unknown. However, this
index can only make comparisons between different clustering
approaches that are generated using the same model/metric.
Otherwise, it makes assumptions about cluster structure.

There are many internal indices such as Sum of Squared
Error, Silhouette index, Davies-Bouldin, Calinski-Harabasz,
Dunn index, R-squared index, Hubert-Levin (C-index),
Krzanowski-Lai index, Hartigan index, Root-Mean-Square Stan-
dard Deviation (RMSSTD) index, Semi-Partial R-squared (SPR)
index, Distance between two clusters (CD) index, Weighted
inter-intra index, Homogeneity index, and Separation index.
Sum of Squared Error (SSE) is an objective function that
describes the coherence of a given cluster, “better” clusters
are expected to give lower SSE values [241]. For evaluation of
clusters in terms of accuracy, the Sum of Squared Error (SSE)
can be used as the most common measure in different works
[18,165]. For each time-series, the error is the distance to the
nearest cluster.
7. Conclusion

Although different researches have been conducted on
time-series clustering, the unique characteristics of time-
series data are barriers that fail most of conventional
clustering algorithms to work well for time-series. In
particular, the high dimensionality, very high feature corre-
lation, and typically large amount of noise that characterize
time-series data have been viewed as an interesting
research challenge in time-series clustering. Accordingly,
most of the studies in the literature have concentrated on
two subroutines of clustering:
1.
 A vast number of researches have focused on high dimen-
sional characteristic of time-series data and tried to present
a way of representing time-series in a lower dimension
compatible with conventional clustering algorithms.
2.
 Different efforts have been taken on presenting a dis-
tance measurement based on raw time-series or the
represented data.

The common characteristic in both above approaches is
clustering of the transferred, extracted or raw time-series
using conventional clustering algorithms such as k-Means,
k-Medoid or hierarchical clustering. However, most of them
suffer from neglecting the data which is caused by dimen-
sionality reduction, inaccurate similarity calculation due to
high complexity of accurate measures, and lack of quality in
clustering algorithms because of their nature which is
suitable for static data.

Highlighting the four representation methods discussed in
this article it can be concluded that the main goal of data
adaptive methods is to minimize the global reconstruction
error using arbitrary length segments. They are better in
approximating each series but when there is several time-
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series they face difficulty. At the other hand, non-data
adaptive methods are suitable for the fixed size time-series
and model based approaches represent the time series in
stochastic ways. In these three approaches user can define the
compression-ratio based on the application in hand while in
data dictated approaches, the compression-ratio is defined
automatically based on raw time-series.

At the other hand, one of the important challenges in
choosing representation methods is to have a compatible
and appropriate similarity measure. Reviewing and compar-
ing available similarity measures in this study revealed that
the most effective and accurate approaches are those which
are based on dynamic programming (DP) which are expen-
sive in computation and their complexity needs to be tuned
and handled before application. After all, literature shows
that the most popular similarity measures in time-series
clustering are Euclidean distance and DTW.

Another challenging issue which can affect the accuracy
of clustering is choosing the appropriate prototype. The
most commonly used prototype is medoid while using
Averaging method is scarce, because it is limited to be used
for time-series with equal length and with using non-elastic
distance measures. After all, results show that the best
clustering accuracy among other prototypes mentioned in
this study belong to the local search prototype.

Finally reviewing time-series clustering algorithms reveals
that comparing to other algorithms; partitioning algorithms
are widely used because of their fast response. However, as the
number of clusters needs to be pre-assigned, these algorithms
are not applicable in most real world applications. In addition,
because of their dependency to prototypes, they are more
suitable for clustering equal length time-series. Hierarchical
clustering at the other hand doesn’t need the number of
clusters to be pre-defined and also it has a great visualization
power in time-series clustering and is a prefect tool for
evaluation of dimensionality reduction or distance metrics
and also the ability to cluster time-series with unequal length
is its other superiority in comparison to partitioning algorithms
as well. But hierarchical clustering is restricted to the small
datasets because of its quadratic computational complexity.
Model based and density based algorithms usage is scarce for
the same problem of slow process and high complexity. In
addition model based algorithms are suffering from their
dependence on user assumptions for parameters. Recently
few studies are focusing on improving and enhancing algo-
rithms by representing newmodels which are mostly based on
combination of different algorithms as hybrid or multistep
clustering algorithms.

Further research works on time-series representation
can address unattended or barely attended areas such as
multivariate time series data with different length,
unevenly sampled data and discrete valued time-series. In
terms of similarity measures, many of proposed similarity
measures do not show any improvements to Euclidean
distance and as experiments in [6] shows their error rates
are even worse. Consequently still the need for more precise
similarity measure is not fulfilled. The same story goes to
cluster prototypes, although a lot of studies are conducted,
still none of them could beat the medoid and averaging
prototypes which are the most used approaches.

Actually, by assuming that time-series clustering can be
improved by advancements in four different aspects as is
represented in Fig. 9, considering the literature, it can be
concluded that most of the studies are focusing on improv-
ing representation methods, distance measurement meth-
ods, and prototypes while the portion of enhancing
clustering approaches is approximately less than 10% in
comparison with other parts:

Among a few approaches and algorithms which have been
proposed for time-series clustering, there are some studies
which have taken explicit or implicit strategies for increasing
the quality (considering the scalability). However, as clustering
approaches are either accurate which are constructed expen-
sively, or inaccurate but made inexpensively, one still can see
the problem of low quality or lack of meaningfulness in the
clusters. In brief, although there are opportunities for improve-
ment in all four aspect of time-series clustering, it can be
concluded that the main opportunity for future works in this
filed could be working on new hybrid algorithms with using
existing or new clustering approaches in order to balance the
quality and the expenses of clustering time-series.
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