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Abstract—Corn has become a staple in many parts of the world, providing not only food, but also act as the raw ingredient for corn 

ethanol, animal feed etc. The Corn Belt in the US has about 96,000,000 acres of land just for corn production, and have characteristics 

of leveled land, fertile and highly organic soils. Breeders have been experimenting with various types of corn hybrids, each of them 

specifically created to have high yield despite the environment it is planted in. Over the years, the farmers have been using trial and 

error method to identify the best hybrids to plant by planting each of these hybrids in different locations with different environmental 

factors; this process has been proven to be slow and not very effective. Hence we designed an app in R to build Geographically 

Weighted Regression (GWR) models to help farmers to better analyse the relationships by exploring the meteorology and 

geographical factors that makes a corn.  We would implement GWmodel package from R to generate our GWR model.  

Index Terms—Geographically Weighted Regression Models, GWmodel, R, Isolines Graphs, Corn Yield, Corn Plantation, Corn Belt

 

1 INTRODUCTION  

Corn or Maize (as called in some countries) was first grown in 

ancient Central America. Corn has become a staple in many parts of 

the world, surpassing wheat or rice. The United States accounts for 

about 40% of production of corn in the world [1], which makes it the 

largest corn producer. The major portion of production is found in 

the Midwestern states, such as Illinois, Iowa, Nebraska and 

Minnesota – these states were grouped and eventually became known 

as the ‘Corn Belt’, as seen in Figure 1.  

 
Figure 1: Corn Belt in the US 

 

The Corn Belt has about 96,000,000 acres of land, and the states that 

make up the Corn Belt were selected due to levelled land, fertile and 

highly organic soils [2]. The growth in yield during the years 1910 to 

1940 were minimal, but due to the increase interest in developing 

‘Hybrid Crops’ from 1940 onwards, the growth in yield has been 

exponential [3]. Hence, breeders have been experimenting with 

various types of corn hybrids, each of them specifically created to 

have high yield despite the environment it is planted in. 

1.1 Motivation 

Over the years, the farmers have been using trial and error method to 

by planting each of these hybrids in different locations with different 

environmental factors; this process has been proven to be slow and 

not very effective [4]. This project aims to create an app using R to 

build Geographically Weighted Regression (GWR) Models to help  

farmers to better analyse the relationships by exploring the 

meteorology and geographical factors that makes a corn.  

 

1.2 Scope  

The scope of the project is limited to the corn produced in the US. 

We will analyse at the ‘Environment’ level (aggregated) instead of 

‘Hybrid’ level. Corn is only grown during Summer/Autumn, hence 

we will only take into consideration the months that Corn is grown – 

this period will be termed ‘Growing Period’ throughout this paper. 

We will also limit the weather (environmental) factors for all years 

provided (2008 – 2017) to the following:  

 Sum and Average Precipitation, 

 Sun Radiation,  

 Average Temperature,  

 Location (longitude and latitude) of the plantation/environment  

1.3 Objective  

The app aims to provide the user with the following:   

 To visualise the weather patterns over the past 10 years during 
the growing season of corn  

 To provide a user-friendly platform for people to build and 
visualise GWR models 

 To provide a simple way to analyse the outputs of GWR models 
(coefficients and p values) 

 To allow user to save and download GWR results for their 
personal use  

1.4 Overview of Paper  

This paper will start with a theoretical background in Section 2, 
where theories for GWR and Inverse Distance Weighted will be 
addressed. Next, Literature Review in Section 3 addresses some of 
current works done using GWR on corn prediction, and the 
visualisation tools out there publicly for corn prediction. Data 
preparation in Section 4 gives a summary of how the data is being 
processed/cleaned. The major section is Section 5, where we give a 
detail breakdown of how the dashboard is created. Section 6 provides 
with a case study to better understand how to analyse the results 
generated by the dashboard. Section 7 will address the conclusions, 
and some of the future works that can be done. Last but not least, 
Section 8 notes some of our learning experiences while doing this 
project.  



 

2 THEORETICAL BACKGROUND  

In this section we will be delving into the theory behind the 

visualisation techniques and models that we use. First and most 

importantly, the theory behind Geographically Weighted Regression.  

2.1 Geographically Weighted Regression (GWR) 

The fundamental of GWR starts with Linear Regression.  

2.1.1 Linear Regression  

 

A linear regression can be summarised as fitting the best line in a 

cloud of points. Let us assume a dependent variable 𝑦 that we want 

to estimate through 𝑛 independent variables = (𝑥𝑗)1≤𝑗≤𝑛 . 

Resolving the linear regression is to find the estimator 𝛽 = (𝛽𝑗)1≤𝑗≤𝑛 

such that: 

𝑦 =  𝛽0 + ∑ 𝑥𝑗𝛽𝑗

1≤𝑗≤𝑛

+ 𝜖 

with 𝜖 being the estimation error, that we wish to be minimal. 

We can rewrite the above equation in Matrix form for compacity: 

𝒚 = 𝒙𝜷 + 𝝐 

where 𝒙 and 𝜷 are row and column vectors respectively. 

The estimator is computed through observations, with the training 

data being represented by the cloud of points we want our line to pass 

through as accurately as possible. 

If we denote 𝑌 = (𝑦𝑖)1≤𝑖≤𝑚 as the vector of our m observations of 

dependent variable y and 𝑋 = (𝑥𝑖𝑗)
1≤𝑖≤𝑚,1≤𝑗≤𝑛

 as the matrix of the 

m observations of n independent variables, we want to find the 

estimator 𝛽 such that the error is minimal: 

min
𝛽

∑ (𝑦 − �̂�)2

1≤𝑖≤𝑚

= min
𝛽

∑ (𝑦 − 𝒙𝜷)2

1≤𝑖≤𝑚

 

 

We can adopt a matrix notation where each line is an observation: 

𝑌 =  [

𝑦1

⋮
𝑦𝑚

] , 𝑋 =  [

(𝑥1𝑗)
1≤𝑗≤𝑛

⋮
(𝑥𝑚𝑗)

1≤𝑗≤𝑛

] 

and find that the estimator minimising the error is such that: 

𝜷 = (𝑋𝑇𝑋)−1𝑋𝑌 

More often than not the data to be analysed has an underlying spatial 

complexity. One could think of using the latitude and longitude of 

data points as variables for their regression, but most probably the 

dependent variable 𝑦 is not linear in the coordinates. How then can 

we account for the location of the data points in our models? 

2.1.2 Introduction of Weights 
One thing we can notice from the classical linear regression is that all 

data points are equally considered in the regression. For instance, this 

means that if we want to use our estimator to evaluate the variable 𝑦 

near the city of Iowa, the data point of Los Angeles would have had 

the same influence in our estimator than the data point of Iowa. 

The idea behind geographically weighted regression is that if we 

want to use our estimator in a specific location, the data points of 

areas near this location should be more influential that points far 

away.  

The “influence” is introduced through a weight matrix W in the 

estimator equation: 

 

𝜷(𝑢𝑖 , 𝑣𝑖) = (𝑋𝑇𝑊(𝑢𝑖 , 𝑣𝑖)𝑋)−1𝑋𝑊(𝑢𝑖 , 𝑣𝑖)𝑌 
 

where (𝑢𝑖 , 𝑣𝑖) are the coordinates of the specific point i, and 

𝑊(𝑢𝑖 , 𝑣𝑖) is the matrix containing the geographical weights in its 

leading diagonal and 0 in its off-diagonal elements 

𝑊(𝑢𝑖 , 𝑣𝑖) = [
𝑤1(𝑢1, 𝑣1) 0 0

0 ⋱ 0
0 0 𝑤𝑛(𝑢𝑖 , 𝑣𝑖)

] 

 

To give an idea of what the weights do let us make the (weak) 

assumption that the data points are ranked by their distance to point 

i. Let us assume too that the weights are 1 if the distance is lower than 

100 km, else is 0. We can subdivide our matrices 𝑋 and 𝑌 into two 

submatrices 𝑋1, 𝑌1 and 𝑋2, 𝑌2 if they are points under 100km or not. 

𝑌 =  [
𝑌1

𝑌2
] , 𝑋 = [

𝑋1

𝑋2
],  

After some calculations, as shown in Annex A, our estimator can be 

rewritten as 

𝛽 = (𝑋1
𝑇𝑋1)−1𝑋1𝑌1 

We have basically filtered the points farther than 100km in our 

estimator, and only the points close to the specific point i are used in 

our estimator. 

2.1.3 Different Weights 
This very simple example is actually an application of a box-car 

weighting function of bandwidth 100km. Imagination is actually the 

only limit to weighting functions, though we typically acknowledge 

the following ones, as shown in Figure 2:  

 
Figure 2 : Six kernel functions; wij is the j-th element of the diagonal of the matrix of 

geographical weights W(ui, vi), and dij is the distance between observations i and j, 

and b is the bandwidth [5]. 

Without necessarily completely cutting off all data after a certain 

distance, weighting function can decrease the influence of data points 

the further they are from the point of interest. 

2.1.4 Few performance remarks 
We should keep in mind a few elements when using GWR. First it is 

much more computationally demanding as we have to calculate our 

estimator for each spatial point, and inverting matrix (𝑋1
𝑇𝑋1) can be 

a long task if we have numerous points. Secondly as some points are 

“filtered” in the regression if they are far from our point of interest i, 

we should make sure that we have enough data points around i to 

have a correct regression there. GWR requires thus more data than 

simple linear regression. 

Finally the model adds a layer of complexity through the choice of 

the weighting function shape and the bandwidth. These two 

parameters should be calibrated through an eventually lengthy 

process to give the best fit of the model. 

The R package that we use for GWR is GWmodel, with three key 

functions, gw.dist ( ), gwr.basic ( ), and bw.gwr ( ). gw.dist ( ) is used 

to create the matrix of distances between each points. gw.basic ( ) is 

the main GWR function where the algorithm reside, and bw.gwr (  )  

is specifically used if user select auto-bandwidth. 



 

2.2 Inverse Distance Weighted (IDW) 

The data we have available is localised, the sample points where 

data is collected being scattered non-uniformly across the US. For 

visualisation purposes, it is necessary to go through a process of 

interpolation to evaluate values in every spatial point. Different 

interpolation techniques exist, but the choice made in this study is 

the Inverse Distance Weighted (IDW) technique. This consists on 

meshing the spatial area we want to display, and evaluating the 

missing values by interpolating between all data points within a 

search radius. The interpolation is not weighted linearly, but by the 

normalised distance to the data points. 

For a point 𝑘 in space, a search radius 𝑟 and data points 𝑖 ∈ 𝐼, we 

evaluate a variable 𝑣𝑝 at point 𝑝 as 

𝑣𝑘 =  
∑

𝑣𝑖

𝑑(𝑖, 𝑘)𝑝𝑖 | 𝑑(𝑖,𝑘)≤𝑟 

∑
1

𝑑(𝑖, 𝑘)𝑝𝑖 | 𝑑(𝑖,𝑘)≤𝑟 

 

With 𝑑(𝑖, 𝑘) being the distance between point 𝑖 and 𝑘, and 𝑝 a 

parameter that will modify the weights and lead to different 

interpolations, as we can see in the two examples below. 

 

 

 

 

Figure 3: Examples of IDW with n=1 (left) and n=2 (right). A higher n diffuses the 

information further [6] 

The IDW implanted in our model is from the R package called gstat, 

where we used the idw ( ) function. In the idw ( ) function, there are 

3 methods to calculate the weight, and the method that we are using 

is the default Sheperd method, a slight variation of the above 

equation that forgo the search radius 𝑟.  

3 L ITERATURE REVIEW  

Di Yang’s Master thesis on spatial analysis on corn yield in the 

Corn Belt uses geographically weighted regression model [7]. 

However, Di Yang did not factor in soil properties, but mentioned 

in his future works that soil properties are also crucial to the yield 

of corn, and quoted paper from Krachenko et al..  

Krachenko et al. [8] analysed the influence of soil and topography 

on the yield of corn in the Corn Belt region. They discovered that 

soil properties contribute about 30% of yield variability, with 

Organic Matter content influencing the yield the most. They also 

pointed out that elevation also contribute about 20% of yield 

variability. They stated that elevation is inversely correlated, with 

higher yields at lower landscapes. However, they did not consider 

the weather influence, hence we are not able to say which factor 

matter more. Hence, our app provides the user with a platform that 

not only see weather influence, but also soil influence on yield. 

Veenadhari et al. [9] developed a software tool in the form of a 

webpage called ‘Crop Advisor’ with the aim to predict the influence 

of climatic parameters on crop yield in India. This software 

provides with correlations between climatic parameters with crop 

yield, but not considering other agro-input parameters such as soil 

conditions, elevation and irrigation. Moreover, the website is not 

intuitive, as not everybody would understand what a decision tree 

is, and may not understand the output generated. Hence our app 

aims to reach out to all, and make it simple to understand by 

visualising the outputs via isoline maps. In this paper, it is also 

stated that they found that corn is most influenced by maximum 

temperature. However, in our project we will discover other factors 

that that may have more influence that temperature.  

Developing crop simulation models are not new in the research field 

[7,9,10]. However, to our best understanding, there is no one good 

app that is able to show us an easy way to understand and analyse 

the results of a GWR model. Most models focus on corn prediction, 

however our app focuses on allowing the user to be able to analyse 

the correlation between weather and soil properties with the yield.  

4 DATA PREPARATION  

All data preparation is done in R.  

4.1 Dataset 
This dataset is from the ‘Syngenta Crop Challenge 2019’. The main 
aim of this challenge is “How will we be able to grow enough food 
to meet the world demand?”  
We have two main datasets that were used for this project: 
Performance Data and Weather Data. We have 10 years’ worth of 
data, from 2008 to 2017, and we are using all the years provided.  

4.1.1 Performance Data 
This is the main dataset that contains the yield of the 

environment/plantation, and each of them is denoted by a unique 

ENV_ID. It can be seen that there are two yields: ‘YIELD’ and 

‘ENV_YIELD_MEAN’. ‘YIELD’ is the individual hybrid yield, 

whereas ‘ENV_YIELD_MEAN’ is the average yield of all hybrids 

planted in that particular environment. We also have the properties 

of soil, such as Clay, pH, Silt etc.  

The growing period of corn is derived from calculating the number 

of days between the planted date and the harvest date. Please note 

growing period this is unique to each ENV_ID, and two ENV_ID 

may not have the same planting date and harvesting date. It is also 

important to note that there may be a couple of ENV_ID that have 

the same longitude and latitude. This is because the soil conditions 

in 2008 will not be exactly the same in 2016, hence though it is the 

same plantation, it is considered as two separate ENV_ID. In other 

words, one plantation could have multiple ENV_ID, but never at 

the same year.  
We created dummy variables for ‘IRRIGATION’ variable, which 

would indicate whether the plantation is irrigated or not, so that we 

are able to analyse the effect of irrigation on yield.  

4.1.2 Weather Data 
For the Weather Data, we have data for all 365 days for each 
environment. However, corn does not grow throughout the year; in 
fact the growing period ranges from about 120 days to 180 days [3]. 
Hence, we will extract the growing periods for each environment 
based on the variable ‘PLANT_DATE’ and ‘HARVEST_DATE’ 
from the Performance Data.  For example, level of precipitation at 
Location A on 8th January 2013 and on 8th January 2015 would be 
different, hence different ENV_ID despite being at the same 
location. 

4.2 Data Cleaning  

We excluded all records that have planting date after harvesting 
date – this does not make sense to have planting date after 
harvesting date. We also excluded all data points that fall outside of 
the US. Next, since we are given the weather data for all 365 days 
for each environment, we extracted out only the growing periods of 
each environment.  
 
 
 
 
 



 

5 DASHBOARD DESIGN  

Link to our app: https://stanleyadion.shinyapps.io/AmazeingCrop/  

User guide: https://wiki.smu.edu.sg/18191isss608g1/img_auth.php/f/fa/User_Guide.pdf  

5.1 Overview Page 

There are two tabs in the Overview Page:  
Background: This tab is meant to give a short introduction to our 
project. We listed our objectives and motivation for this project, as 
well as the flow of the app. This page also gives an overview of 
both of datasets: Performance Data and Weather Data.  
View Our Sandbox: This tab gives a glance at our prepared data.  

5.2 Geofacet Overview Page 

The geofacet package allow us to break down the data into sub 

regions (state or cities for example), display them in individual sub-

graph (facets and position them in a way that reflects their 

geographical localisation. 

Geofacet is a vivid way to visualise patterns in sub regions because 

it arranges the position of each individual sub-graph according to 

its geo-location in reality. As it can be seen, there are differences 

between states in terms of precipitation and weather.  

The geofacet page aims to give the user an overall view of the 

weather patterns of each state that has corn plantations. The first tab 

(Climate Labels) shows the precipitation and temperature in 

barcharts, and the second tab (Climate Time Series) show the 

precipitation and temperature in linegraphs. Figure 4 shows an 

example of geofacet with Time Series. 

 
Figure 4: An example of Geofacet with Time Series 

We labelled each environment using both Precipitation and 

Temperature data. An example is shown in Figure 5. The logic 

behind the labels is as follows:  

For precipitation: If the 75th percentile of the individual 

environment is less than the 75th percentile of that year, then we 

label as ‘LOW’. The rest would be labelled ‘HIGH’ 

For temperature: If the 75th percentile of the individual 

environment is less than the 50th percentile of that year, then label 

as ‘LOW’. If the 50th percentile of the individual environment is 

less than the 75th percentile of that year, then label as ‘HIGH’. 

Those that fall in between are labelled as ‘MEDIUM’.  

 
Figure 5: An example of Geofacet with Climate Labels 

5.3 Climate Isoline Map Page 

Figure 6: Example of our Climate Isoline Map Page 

This page aims to give user a glimpse into the past historical 

weather patterns across the boundaries of states of any of the 

plantations that user is interested in. Figure 6 shows an example of 

the interface layout for this page. The user will be able to toggle 

among the different years, and months. Please take note that the 

weather data only shows data that falls within the growing season 

of corn in that particular environment. In the dropdown list, user 

will be able to select between Precipitation, Temperature and 

Radiation. Only Precipitation has an extra option ‘SUM’, as total 

rainfall is a common measurement of weather; it is illogical to have 

‘SUM’ Temperature or Radiation, hence only the two options of 

‘AVERAGE’ and ‘VARIATION’.   

The user is able to set the inverse distance power, p. We set it to be 

a slider with a step of 0.2 instead of a dropdown list so that user will 

be able to see the gradual changing effect of increasing the power 

(it will be a very long dropdown list). Since the optimal power 

according to Shepard [11] is 2, we set the range to be from 1.0 to 

3.0 with a step of 0.2.  

The user will also be able to select the method for colour 

classification, the methods available are kmeans, quantile and 

hclust. The number of classes of colour can also be set by the user, 

which is using the ‘Set the number of clusters’ selection.  

Kmeans: aims to partition the points into k clusters (where k is set 

by user) such that the sum of squares from points to the assigned 

cluster centres is minimised [12].  

Quantile: produces sample quantiles by segmentation, and the 

number of segments is indicated by the number of clusters [13]. 

Hclust: perform hierarchical cluster analysis using a set of 

dissimilarities for the n data points that are being clustered [14]. 

The boxplot provides more details-on-demand for the user. The 

user can highlight the ‘outliers’ for each month and the 

corresponding locations will be shown in the map. User can 

interactively explore the data by using ‘Box Select’, ‘Lasso Select’, 

and even download the image as a png file, and these interactive 

features are from plotly. 

5.4 GWR Model Page  

This page is about our Geographically-weighted Regression model. 

There are 4 tabs that will guide the user step by step to calibrate the 

GWR model to what the user wants. Our GWR model is solely built 

to have the yield as the dependent variable. We have discussed 

earlier that most of the plantations are planted once in the period of 

10 years, it would not be sensible to take all 10 years to do a single 

GWR model as most plantations do not repeat. Hence we did cross-

sectional analysis, where we took each year as one GWR model.  

https://stanleyadion.shinyapps.io/AmazeingCrop/
https://wiki.smu.edu.sg/18191isss608g1/img_auth.php/f/fa/User_Guide.pdf


 

5.4.1 Model Input Data  
In this tab, the user will be able to select the year, and the type of 

aggregation mode that user wants the yield to be. This selection will 

be carried forward to the other tabs. The user will also be able to 

see the description of the variables that are available for selection.   

5.4.2 Variable Transformation  
In this tab, the user will be able to see the distribution of the 

variables via histogram. Based on the histogram, the user can 

determine which variable requires transformation. This is a crucial 

step in calibrating any regression model. Figure 7 shows an 

example of the actual distribution of Elevation in 2008, which is 

right skewed. Hence we performed a squareroot transformation, 

and after which the distribution looks like a normal distribution.  

 
Figure 7: Before and After Transformation of variable ELEV (Elevation) 

There are many reasons for performing transformation, and one 

reason is to reduce skewness as a distribution that is (nearly) 

symmetric is often easier to handle and interpret than a skewed 

distribution. To reduce right skewness, we mainly take roots or 

logarithm, and to reduce left skewness, we mainly take squares or 

cubes (powers). The transformation made on the selected variables 

will be carried forth to the next tab.  

5.4.3 Variable Selection  
With this tab, the user will be able to select and perform collinearity 

of the variables that user has chosen.  This is also a vital step to take 

before calibrating the GWR model. This ensures that the input 

independent variables are not correlated. A principle danger with 

correlated input variables is overfitting of our GWR models. The 

best regression models are those with independent variables that are 

minimally correlated, but strongly correlated with the dependent 

variable, which in our case is yield. 
The user will be able to ‘Include’ and ‘Exclude’ the variables, and 

the most interesting function of this tab is the correlation plot using 

corrplot package in R – this function will plot a correlation plot of 

the independent variables with all the variables that the user has 

selected. As shown in Figure 8, correlations are displayed with 

ellipses, actual correlation values and red-blue diverging colour. 

The direction and colour of the ellipse shows whether two variables 

are positively or negatively correlated and how strongly they are 

correlated: red denotes negative correlation, and blue denotes 

positive correlation.  For the actual values, any absolute value that 

is greater than 0.8 would be deemed strongly correlated, and the 

user should drop one of the variable to ensure non-collinearity 

among all variables. For this given example, the ‘meanYIELD’ 

(dependent variable) is plotted against all the properties of soil that 

were provided in the data. We can see that ‘Sand’, ‘KSAT’ and 

‘AWC’ are strongly correlated (both positively and negatively) 

with a couple of variables, hence these three should be dropped. 

Figure 8 also show the ‘new’ plot after removal of the highly 

correlated variables: 

 
Figure 8: Correlation Plots before and after removal of highly correlated variables 

Whatever that the user has selected in this tab will be carried 

forward to the final tab: to generate GWR model with the selected 

variables. From Figure 8, Krachenko’s claim that OM (Organic 

Matter) correlates the most with the yield is supported. Among all 

the properties of soil, OM has the largest correlation with yield. 

However, this is not the only insight that we can derive from this 

correlation plot: OM is the most negatively correlated with yield, 

pH is the most positively correlated with yield.   

5.4.4 GWR Model Calibration  
It is important to note that the output of any GWR model are three 

things as listed: 

i. The predicted value for dependent variable y, yield 

ii. The coefficient of the selected independent variables 

iii. The corresponding t statistics of the coefficient, which the 

algorithm will convert to p values  

The y values generated are the predicted y values based on the 

model, and not the actual y values. The model Rsquare value is also 

being displayed. The higher the Rsquare value, the closer the 

predicted y values are to the actual y values. The user will also be 

able to set the bandwidth and the kernel for the GWR model, as 

shown in Figure 9.  

 
Figure 9: Bandwidth and Kernel Selection 

Bandwidth: The auto bandwidth is generated by the algorithm, but 

the user is able to input if user has a value in mind.  

Kernels: The user will also be able to choose among all the 

different kernels, namely Gaussian, Exponential, Bisquare, Tricube 

and Boxcar as shown in Figure 2. The global model is not included 

in the dropdown list as this means equal weightage to every point, 

which would translate to one single coefficient to one variable, 

hence the graph would only show one uniform colour. Adaptive 

kernel ensures all observations have the same number of points to 

generate a local yi. For example, if the user input 20 into bandwidth 

with adaptive kernel selected, this means that each observation will 

have 20 nearest neighbouring points to generate a yi. If the adaptive 

kernel is off, this means that each observation will have a fixed 20 

KM radius to generate a yi. The non-adaptive kernel would be 

slightly unfair for plantations found in Florida (very sparse 

plantations) as compared to Minnesota (many plantations).  

 
Figure 10: An Example of a Coefficient map for one variable of a GWR model 



 

Figure 10 shows an example of a GWR model for 2012, where the 

left-hand side shows the estimate value, and the right-hand side 

shows the corresponding p values. The user will be able to toggle 

to see the coefficient maps and the p-values of the selected 

variables. The user will also be able to download the data for the 

calibrated GWR model under the ‘Data Output’ tab. 

We also provide the user with the results for the Global model if 

user wants to use it for reference. Figure 11 shows an example of 

how the results output is for the Global model. The estimates and 

corresponding p values are also given, but since this is a global 

(linear regression) model, there is only one estimate value per 

variable. The * circled in red shows the significance of the estimates 

to the dependent variable y. For this example, it is clear that 

‘IRRIGATION_IRR’ is the most significant variable affecting the 

yield, and since the estimate is a positive value, it has the strongest 

positive correlation to the yield.  

 
Figure 11: An Example of results for Global GWR Model 

We will discuss in further details on the analysis of the results in 

the next section.  

6 GWR  MODEL ANALYSIS  
Global estimates may prove to be informative for climate 
migration, but it is definitely misleading for localised anlaysis, 
particularly those aimed at former adaption [15]. For this section, 
we will be presenting a case study. Since this app allows user to 
select any combination of variables which will generate different 
GWR models, it is difficult to present a ‘generic’ model. Hence, For 
this case study, we will focus on 2012 as there was a severe drought 
in the US, as well as these variables to generate our model for 
illustration:  

i. Squareroot-transformed ELEV 

ii. Clay 

iii. Silt 

iv. pH 

v. CEC (Cation Exchange Capacity) 

vi. Squareroot-tranformed SumPREC 

vii. meanTEMP 

viii. meanSRAD 

ix. IRRIGATION_IRR (flag variable for normal irrigation) 

 
Figure 12: Correlation Plot of Chosen Variables for Case Study (2012) 

From Figure 12 we can see that as per what literature mentioned, 

soil properties do have some influence on the yield.  

6.1 Case Study: 2012 (Drought)  
For our case study, we decided to pick one GWR model for 

illustration: 2012 as there was a severe drought in the US in 2012. 

The map can only show the coefficient of one variable at a time, we 

chose two variables to illustrate how to analyse the coefficients, we 

chose ‘SumPREC’ and ‘IRRIGATION_IRR. Figure 13 shows the 

actual distribution of sum of precipitation in 2012. It can be seen 

that the circled area has relatively lesser precipitation as compared 

to the other regions based on the intensity of blue – the darker the 

shade, the more precipitation, and vice versa.  

 
Figure 13: Distribution of Sum of Precipitation in 2012 

Hence since rain is scarce in 2012, whatever rainfall that this region 

within the red circle receives will be vital for the survival of corn. 

This is supported by the coefficients generated from the GWR 

model, where the coefficient for variable ‘sumPREC’ is larger for 

regions within the red circle, which means stronger (positive) 

correlation of precipitation at regions with low rainfall with yi as 

shown in Figure 14.  

 
Figure 14: Coefficient Map for variable SumPREC  for 2012 GWR Model 

 



 

The ‘IRRGATION_IRR’ variable further supports this analysis. 

Irrigation for regions within the red circle have a stronger (and 

positive) correlation with yi. Since rainfall is low, farmers will 

depend on irrigation to water the corn, hence areas with low rainfall 

will have stronger (and positive) correlation with irrigation. This is 

proven with Figure 15.  

The p values are most significant at regions within the red circle; 

hence based on a 5% significance level, we are 95% confident those 

estimates within red circle are significant.  

 
Figure 15: Coefficient Map for variable IRRIGATION_IRR  for 2012 GWR Model 

Figure 16 shows the results/output for the Global Model for our 

case study. With similar analysis with Figure 10, it can be seen that 

‘IRRIGATION_IRR’ is the most significant variable due to ***. 

Similarity, since coefficient for ‘IRRIGATION_IRR’ is positive, it 

is positively correlated to yield (circled in red). In other words, an 

increase in IRRIGATION_IRR would generate the largest increase 

in yield as compared to other independent variables.  

Likewise, ‘MeanTEMP’ has the most negative coefficient, which 

means that an increase in ‘MeanTEMP’ would generate the largest 

decrease in yield as compared to other independent variables.   

The R-squared values for the Global model is circled in yellow, and 

the value hovers at around 35%. This means that the predicted y 

values are only 30% in similarity with the actual y values, which 

proves that the Global Model is not the right model for crop 

analysis, as Global model does not take into consideration the effect 

of location. Hence GWR models work much better in providing the 

user with analysis.  

 
Figure 16: Results of Global Model for Case Study (2012) 

We also generated different GWR models using different kernels, 

and the coefficients for ‘SumPREC’ and p values are shown below 

in Figure 17. The first four kernels (Gaussian, Exponential, 

Bisquare and Tricube) have similar looking coefficients for variable 

‘sumPREC’, except for Boxcar kernel. Based on Figure 2, it can be 

seen that Boxcar takes observations within the bandwidth to have 

the same weightage, which is similar to the global model where all 

observations have equal weightage, hence this smoothens out the 

intensity, with larger patches of uniform colour.  

 
 

Figure 17: An example of GWR with different kernels 

 For this paper, we only showed two independent variables, 

‘SumPREC’ and ‘IRRIGATION_IRR’, for the GWR model in 

2012, but note that all 10 variables listed previously have their own 

respectively coefficient maps. The way to analyse the coefficients 

is solely based on the intensity of blue or red, depending on whether 

it is positively or negatively correlated respectively.  

For our dataset, it is difficult to compare year on year as the 

plantations that were planted in one year may not be the same 

plantation planted in another year, hence it would not be an apple-

to-apple comparison. Hence with this app, it would be more 

appropriate to guide user look at and analyze the independent 

variables affecting the yield for a particular year. 



 

7 FUTURE WORKS AND CONCLUSION  

Di Yang [7] proved that the impact of precipitation during the later 

stage of corn growth (reproductive state – start of growth of corn) 

is greater than during beginning stage of corn growth (vegetative 

state – growing of plant before corn). This means that precipitation 

is more important to have during the reproductive stage. Hence one 

possible future work is to segment the growing season of corn into 

two sections: Vegetative Stage, and Reproductive Stage. This 

segmentation may be able to provide deeper insights into which 

factors affect which growing stage of corn.  

Another possible future works is to incorporate spatial 

multicollinearity. The variables may not be collinear with each 

other, but may but spatially collinear, and if not dealt with properly 

may lead to unreliable results [16]. Due to time constraint, we did 

not factor in spatial multicollinearity, which can be approached 

using GW Principle Component Analysis [17, 18]. GW PCA allows 

us to detect multivariate spatial outliers, and as well as to account 

for certain spatial heterogeneity.  

In conclusion, corn yield is influenced by not only weather but also 

soil properties and presence of irrigation. The main aim of this 

project aims to provide user with a platform to analyse the 

correlations between weather and soil influence on yield, and we 

came up with a dashboard to fulfil this aim. This app is intuitive for 

user to understand the correlations, as we showed the analysis using 

isoline correlation maps, where the coefficients are plotted on a 

map, with darker shades corresponding to stronger (either 

positively or negatively) correlation with yield. 

8 LEARNING EXPERIENCE  

The components of isoline map are actually tiny grids, the number 

of which is set by designer of the app. In our study, on the given US 

region, we created 50,000 tiny grids as the base of isoline map. It is 

notable that, the number of grids actually is the resolution of the 

displaying of the map, thus, increasing the number of grids can 

make the map look smoother. 

Lot of learning experience is encountered when we design our 

application, which includes simplifying the complicated process of 

data preparation and calibrating the model itself. A simple example 

of the design thinking that we go through is to decide whether the 

model transform tab should come before or after the variable 

selection tab. In addition, small details such as the name and 

locations of the buttons should also be made intuitive to improve 

user experience. 
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ANNEX A 

Adopting the notations introduced above, let us first calculate 

𝑋𝑇𝑌. 

𝑋𝑇𝑊(𝑢1, 𝑣1)𝑌 =  [𝑋1
𝑇 𝑋2

𝑇] . [

1 0 0
0 ⋱ 0
0 0 1

0

0 0

] . [
𝑌1

𝑌2
] 

=  [𝑋1
𝑇 𝑋2

𝑇] . [
𝑌1

0
] 

= 𝑋1
𝑇𝑌1 

Calculating now 𝑋𝑇𝑊(𝑢1, 𝑣1)𝑋 we find: 

𝑋𝑇𝑊(𝑢1, 𝑣1)𝑋 

=  [𝑋1
𝑇 𝑋2

𝑇] . [

1 0 0
0 ⋱ 0
0 0 1

0

0 0

] . [
𝑋1

𝑋2
] 

=  [𝑋1
𝑇 𝑋2

𝑇] . [
𝑋1

0
] 

= 𝑋1
𝑇𝑋1 

Using these two results we have proven that 

(𝑋𝑇𝑊(𝑢1, 𝑣1)𝑋)−1(𝑋𝑇𝑊(𝑢1, 𝑣1)𝑌) 

= (𝑋1
𝑇𝑋1)−1𝑋1𝑌 
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