Difference between revisions of "Charge Metrics Proposal"

From Visual Analytics for Business Intelligence
Jump to navigation Jump to search
Line 58: Line 58:
 
  <center>Source: https://www.ema.gov.sg/Statistics.aspx  </center>
 
  <center>Source: https://www.ema.gov.sg/Statistics.aspx  </center>
 
||  
 
||  
* Postal Code (2013-2016)
+
* Postal Code  
* Room Type
+
* Type of Dwelling
* Month
+
* Month (2013-2016)
 
* Electricity Consumption  
 
* Electricity Consumption  
 
||  
 
||  

Revision as of 02:21, 15 October 2018

IS428_ChargeMetrics_Project
HOME  

PROPOSAL

  PROJECT POSTER  

PROJECT APPLICATION

  RESEARCH PAPER


Motivation

Household electricity consumption in Singapore has increased by about 17% over the past decade, according to a report by the National Environment Agency in May 2018. On aggregate levels, Singapore households consumed 7,295 GWh (gigawatt hours) in 2017, which roughly translates to an average expenditure of $1,000 a year on electricity per household.

Electricity consumption is a national issue, especially given that Singapore has finite energy sources. It is therefore important to encourage households to consume electricity in more sustainable ways.

Traditionally, the lack of transparency surrounding electricity use has been acknowledged as a possible challenge in raising awareness on electricity consumption. Improving visualisation of household electricity consumption can help people in Singapore gain better clarity of their consumption habits and expenditure, and thus more incentive to reduce electricity usage.

Our project visualises the distribution of household electricity consumption across planning regions in Singapore, accounting for type of residential homes, income and demographic profiles. We aim to better communicate electricity consumption in everyday life to people in Singapore, and ultimately engage them to reduce electricity consumption.


Objectives

Data

Datasets Data Attributes Rationale Of Usage
EMA Household Energy Consumption
Datasource1.png
Source: https://www.ema.gov.sg/Statistics.aspx
  • Postal Code
  • Type of Dwelling
  • Month (2013-2016)
  • Electricity Consumption
There are 2 group of dataset. 1. Household Energy consumption
Bus Stop Names and Locations
(https://www.mytransport.sg/content/mytransport/home/dataMall.html#)
  • Bus Stop Number
  • Bus Stop Roof Number
  • Bus Stop Name
  • X
  • Y
  • Latitude
  • Longitude
This dataset aims to complement the main dataset by providing detailed information about the latitude and longitude of the bus stops located around HDB. We use a javascript geocoding script to convert all the X and Y coordinates to EPSG:4326 latitude and longitude coordinates.
Mrt Stations Names and Locations
(https://www.mytransport.sg/content/mytransport/home/dataMall.html#)
  • MRT Station Number
  • MRT Station Name
  • X
  • Y
  • Latitude
  • Longitude
This dataset aims to complement the main dataset by providing detailed information about the latitude and longitude of the MRT stations located around HDB. We use a javascript geocoding script to convert all the X and Y coordinates to EPSG:4326 latitude and longitude coordinates
Master Plan Subzone Boundary Names and GeoPolygon
(https://data.gov.sg/dataset/master-plan-2014-subzone-boundary-no-sea)

  • Polygon
  • Name
  • Subzone Number
  • Subzone Code
  • Region Name
  • Area Code
  • Area Indicator
This dataset aims to complement the main dataset by providing detailed information about all the subzone in Singapore. We use a javascript library toGeoJson.js to help us convert .KML file to .GeoJson file


Related Works


Related Works What We Can Learn

Dashboard Visualisation of Average Monthly Household Energy Consumption Per Year in Singapore

ChargeMetrics Related1.png

Source: https://analyticsandintelligentsystems.wordpress.com/2017/04/28/dashboard-visualisation-of-average-monthly-household-energy-consumption-per-year-in-singapore/

Prediction of Buildings Energy Consumption

ChargeMetrics Related2.png

Source: http://cs109-energy.github.io/building-energy-consumption-prediction.html

Visualizing Energy Consumption in Philadelpia

ChargeMetrics Related3.png

Source: http://www.kennethelder.com/visualizing-energy-consumption-in-philadelphia/

Visualizing U.S. Energy Consumption in One Chart

ChargeMetrics Related4.png

Source: http://www.visualcapitalist.com/visualizing-u-s-energy-consumption-one-chart/


Prototype

Landing Page

Prototype 1


[1]Logo
[2]Bivariate Chloropleth Map
[3]Filter
[4]Button to Historical Trend Page
[5]Slope Graph

Historical Trend Page

Prototype 1


[1]Area Chart for Total Electricity Consumption
[2]Area Chart for Number of Singapore Resident
[4]Rate of Change of Number of Singapore Resident and Total Electricity Consumption
[3]Connected Scatter Plot



Project Schedules

ChargeMetrics_Project_Schedule

Project Schedule on Google Sheet:https://docs.google.com/spreadsheets/d/1IlT3Na8Ujlv9izY-0PWvCWEWzfqOmzq3jGHIbWCDiwk/edit?usp=sharing

ChargeMetrics_Timeline



Challenges

Challenges Possible Solutions

Unfamiliar with D3.js

  • Independent learning through online learning resources
  • Validating learning outcome through review and coding practices

Data Merge, Cleaning and Transformation

  • Subzone energy usage data:
  • Missing NA records: government have purposedly removed some data points to enforce the data privacy. We will be examine the effect of remove the NA and decide the appropriate action to take.

Choice of web hosting provider

  • A quick production pipeline required due to the time limit
  • Examine the requirement of the data visualisation: dynamic or statics
  • Current solution is to use Github Page as a hosting provider there is no dynamic data retrieval required

Unfamilar with implementation efforts required for customized D3.js interactivity

  • The week will be spending 2 weeks to familiarize with D3.js structure & syntax
  • Follwing 2 weeks will be trying out the customized D3.js interactivity
  • The project scope and plan will be re-examined based on the project objective, complexity and time available


References

[1] Energy Market Authority (https://www.ema.gov.sg/singapore_energy_statistics.aspx)
[2] Data Gov Database (https://data.gov.sg)
[3] D3.js (Documentation https://d3js.org/)
[4] Observalehq (https://beta.observablehq.com/)
[5] One Map (https://www.onemap.sg/main/v2/)
[6] Energy Consumption Predition Example (http://cs109-energy.github.io/building-energy-consumption-prediction.html)


Feedback

Please feel free leave your comments, suggestions or anything interesting :)