
AN INTERACTIVE VISUAL APPLICATION

TO EXPLORE COMMUNITIES

ON STACKOVERFLOW
Amos Tan Wei Jie, Ong Sue Cern, Tay Wei Rong

Abstract – Stackoverflow is a growing questions-and-answers site for software programming.

Over the 9 years of the site, it has collected a vast amount of rich and helpful data, contributed

by its active community of users. This research project aims to understand interactions between

Stackoverflow users and how they use various technologies. To achieve this, our team designed

an interactive visual application utilizing data from Stackoverflow’s data dump. Visualizations

for the application make use of sigma.js and D3.js to display graph networks. Through this data

visualisation application, our team hopes to help both users and Stackoverflow understand user

interactions and technology trends on the site better.

I. INTRODUCTION

Founded in 2008, Stackoverflow is the flagship

site of the Stack Exchange Network, which fea-

tures questions and answers on a wide range of

topics. Stackoverflow focuses solely on soft-

ware programming questions, ranging many

technologies.

Users can ask and answer questions, and be in-

volved through commenting, voting and editing

posts. Based on their activity, they can earn rep-

utation points and badges, thus indicating high-

value posts and contribution.

Stackoverflow maintains quality posts through

self-regulation by the community. Its success,

reaching over 50 million people globallyi each

month, has led it to expand into partnering with

employers for recruitment of developers. It also

provides business solutions to businesses based

on insights from its sites. With a rich amount of

data available, we are interested in how the com-

munity has evolved over time for the different

technologies, and how this reflects different

trends over time.

II. MOTIVATION

Our research is motivated by the lack of infor-

mation on community interaction within Stacko-

verflow. As Information Systems students who

view the site frequently and rely heavily on it for

assistance, we realised that we are surprisingly

unaware of how interaction occurs on the site to

keep the community active.

Most visualizations available show the growth

and popularity of technologies, but not the un-

derlying users driving these trends. We find it

important to study user-to-user interaction as the

community plays a very important role in

providing useful content to the website.

Apart from the users, the use of multiple tags of

technologies (e.g. javascript, jquery, react-na-

tive) which are placed on a question posted al-

low us to study how closely related different

technologies are to one another. This is useful in

understanding ways to integrate separate tech-

nologies with one another, and to gauge the pop-

ularity of using these technologies together.

III. RELATED WORKS

Fig 1: Interactive chart showing % of Stackoverflow

questions per month by tag, Stackoverflow Insights Websiteii

Stackoverflow has published insights, mainly on

the popularity of different technologies over

time, based on questions asked on its website.

As this is plotted in a time series and in compar-

ison with other technologies, this allows viewers

to quickly grasp which technology is gaining

traction and support on the site. However, there

is a lack of visibility into changes in user inter-

actions and contributions over time, as technol-

ogy trends change. We believe that this is im-

portant, in order to understand how Stackover-

flow contributors assist users, once users are in-

terested in picking up the technology. Identify-

ing valuable users within the community would

also help Stackoverflow and related technology

companies hire talent or increase influence of

Stackoverflow.

Fig 2: Graph network showing relation of tags on

Stackoverflow, Public Kaggle Projectiii

Another related work found was a network

graph on the tags used on Stackoverflow and

their relations to one another. The visualisation

provides a clear understanding on how the dif-

ferent technologies on Stackoverflow are related

to one another. Various technologies are col-

oured differently to indicate that they belong to

separate groups. The length of the edges relays

the closeness of a technology to another, and

node size likely translates to the popularity of

the technology. However, it is hard to notice pat-

terns in the graph as the clusters are not very

prominent. The graph is cluttered and static, so

it is hard to zoom in to understand each cluster

better and to rearrange nodes and edges for a bet-

ter view. Overlaps between different clusters are

also hard to identify. We believe that such a vis-

ualization will be more suitable on d3.js.

IV. VISUALIZATION APPROACH

Our group extracted the Stackoverflow raw data

from the Stack Exchange Data Dump, and used

all the data from 2008 to September 2017, as last

updated in the data dump. The files, in XML for-

mat, consist of badges, posts, comments, post

links, users and votes. We excluded post history

as the data was too focused on individual

changes made to a posts, rather than general pat-

terns of the community. Based on the different

raw files, we came up with a data model to de-

scribe interactions on the site by users.

Fig 3: Data model showing the interactions between nodes

The total size of the files when uploaded was

87.71GB, consisting of 178 million nodes and

401 million edges. Given the large data size and

processing power required, we hosted the data-

base on Google Cloud Platform, using a 32GB

RAM, 6vCPU server.

Our group used a graph database, neo4j to store

our data. This allowed us to query on the data-

base browser interface and thus, explore our data

easily. Using the Cypher query language, we

could specify relationships and nodes to be re-

turned. Query results would be returned in a

graph showing interactions among the different

type of nodes. However, due to the large dataset,

we faced challenges in returning query results

for large queries e.g. returning questions posted

by tags, sorted on creation date. With limited

RAM, both the database and browser crashed

multiple times. To prevent this, we indexed our

database on certain attributes and made more

specific queries.

In order to make sense of the data, we used

Gephi, a graph visualization and exploration of-

fline platform, to run analysis on the graphs. We

used the neo4j plugin available on Gephi to im-

port the nodes and edges data, which would be

streamed into Gephi. The neo4j database also

comes with a library, APOC, that allows re-

turned nodes and edges, specified in the query,

to be streamed to Gephi.

Iteration 1 – Non-graph visualizations

Initially, our group was interested in predicting

speed of response to a question as we felt that it

would be a good incentive for viewers on the site

who were hesitant to post questions. We also

wanted to visualize top contributors by measur-

ing badges, posts, aggregated upvotes and years

of experience. However, we realised that such

visualizations do not help us to understand com-

munity interactions better, hence it was not in

our interest

Iteration 2 – Mixed-type nodes in graph

Our group wanted to visualise in a graph the in-

teraction between questioners, answerers and

posts to reflect the interaction among users in a

community. However, having 2 different types

of nodes: users and posts made it difficult to run

analysis on the graph and to understand patterns

better. The use of mixed-type nodes in the graph

is limited as patterns between graphs can only be

easily observed through ‘eyeballing’. Moreover,

they are only comparable if graphs of 2 different

technologies have similar network size, which

greatly limits its use.

Fig 4: Mixed-type nodes graph with users and posts as node

types.

Another graph we considered were post hyper-

links between various posts. With a vast amount

of data available, our group wanted to visualise

the two main types of post links: duplicate ques-

tions and references to other posts (similar to ci-

tation/PageRank algorithm). However, this was

less suited in helping us understand interactions

between users. Instead, it would be more useful

to conduct text analytics on these posts to under-

stand what type of questions are commonly ref-

erenced or repeatedly asked.

Iteration 3 – Filters on Graph

We wanted to use cross-filter to slice and filter

data on attributes such as time and country.

However, we dropped the country filter as it

would result in more disconnections on a graph

network. It would be more suitable to plot

growth of new technologies and their spread

across countries using other types of visualiza-

tions e.g. map, however due to time constraints,

we were unable to implement this idea.

V. VISUALIZATIONS SELECTED

Visualization 1: Cluster of Tags

First, we queried our neo4j database on the fre-

quency of 2 tags being used together in a post

and plotted the streamed data in a graph on

Gephi.

To calculate the various clusters, our group used

Gephi’s modularity analysis, which makes use

of the Louvain method for community detection.

The Louvain method uses the ‘greedy algorithm’

to assign nodes to communities, then evaluate

how densely connected the nodes are in the com-

munity as compared to average closeness if they

were arranged randomly, which is known as the

graph’s modularity. It fine tunes the assignments

until it reaches the maximum modularity possi-

ble. The Louvain method is superior due to its

fast processing for large graph networks.iv When

running the graph of tags, a modularity of 0.631

was achieved for the entire network, with 12

communities identified.

Fig 5:

Clusters

of tags on

Gephi,

with data

streamed

from

neo4j da-

tabase

We then exported the nodes and edges CSV files

from Gephi to be used in our D3.js visualization

on our application. We selected D3.js to visual-

ize the graph as it allows for interactivity on re-

arranging the positions of nodes and edges by

dragging the nodes. The graph was displayed us-

ing a force-directed layout available on D3.js.

We also used convex hulls on the various clus-

ters, which outline the area of a cluster. This al-

lows viewers to identify the clusters easily and

make inferences on the size and overlaps of each

cluster. The convex hulls make the graph sim-

pler to grasp and more aesthetically pleasing. In

addition, we added a filter by cluster to allow us-

ers to interact with the different clusters and

view changes to the graph once clusters are re-

moved.

Visualization 2: Network Graph Analysis

To carry out analysis between users of Stacko-

verflow, our group had to link users to one an-

other by proxy. This meant that the link from a

user to another user is indirectly formed via an

activity on a creator’s post. Hence, to draw the

graph, we had to summarise activities between

users as answering a question, commenting or

editing on another users’ post.

We wanted the search to be carried out dynami-

cally based on the tag entered. This would allow

for flexibility in searching on the hundreds of

tags available on Stackoverflow. When the

graph of user-to-user interaction is returned, by

default, the nodes would be populated randomly,

thus overlapping one another and making it hard

to make sense of any pattern. Hence, we used

sigma.js, a graph-drawing library with the abil-

ity to run force-directed layout animations on

large graphs in order to spot node connections

easily in the graph. Viewers can also click on a

specific node and to highlight the node, its edges

and neighbouring nodes, allowing viewers to

observe the connections of a node easily.
 Fig 6:

Clicking on

a node al-

lows high-

lighting of

its neigh-

bours and

connections

We measured the degree centrality of each user

based on the in-degree and out-degree edges,

which represent interaction. Out-degree central-

ity allows us to measure activity of a particular

user in the network in reaching out to different

posts. On the other hand, in-degree measures

high attention received by posts of a particular

user. We also measured the betweenness central-

ity of each user, which indicates the amount of

information flow in the network that will pass

through the user. This is calculated by summing

up the number of shortest paths from any node

in the network to another that passes through the

node measured, divided by the total number of

shortest paths in the whole network.

Fig 7: Mathematical formula for calculating the betweenness

centrality of a node v, by taking the summation of sets where

shortest-path (s-t) passes through v, out of all pathsv

Betweenness and degree centrality are calcu-

lated per user based on the technology or tag

only, hence a user which belongs to many dif-

ferent technology communities would have dif-

ferent centrality scores for each community.

VI. KEY FINDINGS & INSIGHTS

Cluster of Tags

Fig 8: Clusters of tags visualized with D3.js for interactivity

Based on the undirected graph visualized, we

notice the 3 largest clusters of tags: C#, Javas-

cript and Java. The cluster size indicates many

related tags, which are mainly popular tools and

libraries. We observe that for Javascript, the

most frequent tag is jQuery and JSON as the

edges between them and Javascript is very short.

The most frequent tag for C# is ASP.NET and

ASP.NET-MVC while for Java it is arrays, An-

droid and regex. We also observe that Javascript

is very versatile and bridges 3 other clusters,

Ruby, Facebook and iOS to the main network.

Some of the tags returned are the popular fea-

tures of a technology such as dictionary and list

for Python; arrays, regex, for-loop and collec-

tions for Java; events for C# and callback and

promise for Javascript. Due to the specific na-

ture of tags, we can thus observe that these are

the most asked functions of the languages.

Another cluster that is fairly large would be the

light purple cluster with PHP and the various da-

tabases. After Javascript, Java and C#, PHP is

the 4th highest in the number of ties with other

nodes. It has direct links with Java and Javas-

cript, as well as other tags in both the Java and

Javascript clusters.

We observe that the light green cluster with

Linux, C and C++ is quite sparse with few con-

nections. It is also interesting to note that R, a

popular programming language for data analyt-

ics, is used mainly in isolation by Stackoverflow

users, as it is not connected to the main network.

Another cluster in isolation to the main network

is Flash, which has been declining in popularity.

Network Analysis

To understand each community of tags better,

we conducted network analysis on user-to-user

interactions within a community. Using a brush

on a timeline to select a time period, the user

interactions within the period is returned in the

graph. The timeline includes a bar graph of

interaction count for each month, so users can

identify the trend in popularity of the particular

technology, or identify when it was introduced

(if after 2009).

Fig 9: Visualization of react-native community in 2015.

Based on Fig. 9, the visualization for the ‘react-

native’ community is shown. The year specified

in the timeline at the bottom is 2015, which is

the year it was introduced. Nodes are sized based

on out-degree, while their colour is determined

by their betweenness score. Top 5 users in both

categories are listed in a table on the right so that

viewers can observe changes in top contributor

rankings over time. To understand who these top

contributors are, clicking their name in the table

brings the viewer to view their user page on

Stackoverflow. By comparing the graph for a

technology over time, we observed several

patterns.

Fig 10: React-native community in 2015(left), which was its

first year of launch, and in 2016 (right).

From 2015-2016, the number of nodes increased

by 4 times, while the number of connected

components (lower value indicates higher

connectedness) increased by 3.9 times. This

shows us that even though the graph looks much

more connected in 2016, it is only slightly more

connected.

Fig 11: Top contributors in react-native community in

2015(left) and in 2016 (right).

From 2015-2016, the top contributors are all

different, except for Nader Dabitvi, who moved

from 2nd to 1st place in degree ranking. When we

click on his name, it shows us his current profile

of top tags in ‘react-native’, asking a total of 8

questions and answering 208, hence the high

out-degree score. Looking at vijayst’s profilevii,

the top in betweenness ranking for 2016, we

notice that he has a more balanced proportion of

questions asked and answered, which are 14 and

133 respectively. Hence, his high betweenness

score indicate that information flowing from one

node in the network to another is likely to pass

through him.

We can also compare connectedness between

different technologies.

Fig 12: React-native community in 2015(left), which was its

first year of launch; and ionic-framework community in 2014

(right), also its first year of launch.

For both ‘react-native’ and ‘ionic-framework’ in

their first year of launch, we notice that their

network size is very similar of 1707 nodes for

react-native and 1751 nodes for ionic-

framework. However, their connectedness and

density differ quite significantly. React-native

has more edges (2594) as compared to ionic

(2203), despite having fewer nodes, hence react-

native community is a denser network. Based on

both the number of nodes and connected

components, we observe a rough estimate of

about 13 nodes in one connected component for

react-native, as compared to 9 nodes for ionic-

framework, indicating that react-native

community is more connected.

In the case of react-native and ionic-framework,

the connectedness of the community have

i About. (n.d.). Retrieved November 25, 2017, from

https://stackoverflow.com/company
ii Robinson, D. (2017, May 9). Introducing Stack Over-

flow Trends. Retrieved November 25, 2017, from

https://stackoverflow.blog/2017/05/09/introducing-stack-

overflow-trends/
iii Silge, J. (n.d.). Network graph. Retrieved November

25, 2017, from https://www.kaggle.com/juliasilge/net-

work-graph/code
iv Blondel, V. D., Guillaume, J., Lambiotte, R., &

Lefebvre, E. (2008). Fast unfolding of communities in

large networks. Journal of Statistical Mechanics: Theory

increased as popularity increased. Hence, we

studied if this was also the case for a technology

with falling popularity. Using Silverlight, as the

community declined in numbers, its

connectedness was severely reduced. The

estimated number of users per connected

component dropped from 13 users to 3 users

from its peak in 2011 to 2016 levels. A similar

trend is noticed in Flash, where users per

connected component dropped from 9 to 5. This

shows that a large decline in a technology

community results in an increase in sparse one-

off interactions and questions.

Fig 13: Silverlight community in 2011 (left), when popularity

peaked; and in 2016 (right), in decline.

VII. CONCLUSION

Stackoverflow consists of various communities,

which span a wide range of languages, libraries

and tools. Understanding how different group of

technologies are used together enables users and

Stackoverflow to recommend new ways to

integrate different technologies with one

another. By understanding which contributors

are essential in the network due to high

contributions in answering and in passing of

information across the network, Stackoverflow

can look into more ways to encourage such

quality engagement.

and Experiment,2008(10). doi:10.1088/1742-

5468/2008/10/p10008
v Ulrik Brandes: On Variants of Shortest-Path Between-

ness Centrality and their Generic Computation. Social

Networks 30(2):136-145, 2008. http://www.inf.uni-kon-

stanz.de/algo/publications/b-vspbc-08.pdf
vi User Nader Dabit. (n.d.). Retrieved November 25,

2017, from https://stackoverflow.com/us-

ers/2864119/nader-dabit
vii User vijayst. (n.d.). Retrieved November 25, 2017,

from https://stackoverflow.com/users/558972/vijayst

