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Abstract – Stackoverflow is a growing questions-and-answers site for software programming. 

Over the 9 years of the site, it has collected a vast amount of rich and helpful data, contributed 

by its active community of users. This research project aims to understand interactions between 

Stackoverflow users and how they use various technologies. To achieve this, our team designed 

an interactive visual application utilizing data from Stackoverflow’s data dump. Visualizations 

for the application make use of sigma.js and D3.js to display graph networks. Through this data 

visualisation application, our team hopes to help both users and Stackoverflow understand user 

interactions and technology trends on the site better.   

I. INTRODUCTION 

Founded in 2008, Stackoverflow is the flagship 

site of the Stack Exchange Network, which fea-

tures questions and answers on a wide range of 

topics. Stackoverflow focuses solely on soft-

ware programming questions, ranging many 

technologies.  

Users can ask and answer questions, and be in-

volved through commenting, voting and editing 

posts. Based on their activity, they can earn rep-

utation points and badges, thus indicating high-

value posts and contribution. 

Stackoverflow maintains quality posts through 

self-regulation by the community. Its success, 

reaching over 50 million people globallyi each 

month, has led it to expand into partnering with 

employers for recruitment of developers. It also 

provides business solutions to businesses based 

on insights from its sites. With a rich amount of 

data available, we are interested in how the com-

munity has evolved over time for the different 

technologies, and how this reflects different 

trends over time.  

II. MOTIVATION 

Our research is motivated by the lack of infor-

mation on community interaction within Stacko-

verflow. As Information Systems students who 

view the site frequently and rely heavily on it for 

assistance, we realised that we are surprisingly 

unaware of how interaction occurs on the site to 

keep the community active. 

Most visualizations available show the growth 

and popularity of technologies, but not the un-

derlying users driving these trends. We find it 

important to study user-to-user interaction as the 

community plays a very important role in 

providing useful content to the website. 

Apart from the users, the use of multiple tags of 

technologies (e.g. javascript, jquery, react-na-

tive) which are placed on a question posted al-

low us to study how closely related different 

technologies are to one another. This is useful in 

understanding ways to integrate separate tech-

nologies with one another, and to gauge the pop-

ularity of using these technologies together.  

III. RELATED WORKS 

 

 
Fig 1: Interactive chart showing % of Stackoverflow  

questions per month by tag, Stackoverflow Insights Websiteii 

Stackoverflow has published insights, mainly on 

the popularity of different technologies over 



time, based on questions asked on its website. 

As this is plotted in a time series and in compar-

ison with other technologies, this allows viewers 

to quickly grasp which technology is gaining 

traction and support on the site. However, there 

is a lack of visibility into changes in user inter-

actions and contributions over time, as technol-

ogy trends change. We believe that this is im-

portant, in order to understand how Stackover-

flow contributors assist users, once users are in-

terested in picking up the technology. Identify-

ing valuable users within the community would 

also help Stackoverflow and related technology 

companies hire talent or increase influence of 

Stackoverflow. 

 
Fig 2: Graph network showing relation of tags on  

Stackoverflow, Public Kaggle Projectiii 

Another related work found was a network 

graph on the tags used on Stackoverflow and 

their relations to one another. The visualisation 

provides a clear understanding on how the dif-

ferent technologies on Stackoverflow are related 

to one another. Various technologies are col-

oured differently to indicate that they belong to 

separate groups. The length of the edges relays 

the closeness of a technology to another, and 

node size likely translates to the popularity of 

the technology. However, it is hard to notice pat-

terns in the graph as the clusters are not very 

prominent. The graph is cluttered and static, so 

it is hard to zoom in to understand each cluster 

better and to rearrange nodes and edges for a bet-

ter view. Overlaps between different clusters are 

also hard to identify. We believe that such a vis-

ualization will be more suitable on d3.js. 

IV. VISUALIZATION APPROACH 

Our group extracted the Stackoverflow raw data 

from the Stack Exchange Data Dump, and used 

all the data from 2008 to September 2017, as last 

updated in the data dump. The files, in XML for-

mat, consist of badges, posts, comments, post 

links, users and votes. We excluded post history 

as the data was too focused on individual 

changes made to a posts, rather than general pat-

terns of the community. Based on the different 

raw files, we came up with a data model to de-

scribe interactions on the site by users.  

 
Fig 3: Data model showing the interactions between nodes 

The total size of the files when uploaded was 

87.71GB, consisting of 178 million nodes and 

401 million edges. Given the large data size and 

processing power required, we hosted the data-

base on Google Cloud Platform, using a 32GB 

RAM, 6vCPU server. 

Our group used a graph database, neo4j to store 

our data. This allowed us to query on the data-

base browser interface and thus, explore our data 

easily. Using the Cypher query language, we 

could specify relationships and nodes to be re-

turned. Query results would be returned in a 

graph showing interactions among the different 

type of nodes. However, due to the large dataset, 

we faced challenges in returning query results 

for large queries e.g. returning questions posted 

by tags, sorted on creation date. With limited 

RAM, both the database and browser crashed 

multiple times. To prevent this, we indexed our 

database on certain attributes and made more 

specific queries. 

In order to make sense of the data, we used 

Gephi, a graph visualization and exploration of-

fline platform, to run analysis on the graphs. We 

used the neo4j plugin available on Gephi to im-

port the nodes and edges data, which would be 



streamed into Gephi. The neo4j database also 

comes with a library, APOC, that allows re-

turned nodes and edges, specified in the query, 

to be streamed to Gephi.  

Iteration 1 – Non-graph visualizations 

Initially, our group was interested in predicting 

speed of response to a question as we felt that it 

would be a good incentive for viewers on the site 

who were hesitant to post questions. We also 

wanted to visualize top contributors by measur-

ing badges, posts, aggregated upvotes and years 

of experience. However, we realised that such 

visualizations do not help us to understand com-

munity interactions better, hence it was not in 

our interest 

Iteration 2 – Mixed-type nodes in graph 

Our group wanted to visualise in a graph the in-

teraction between questioners, answerers and 

posts to reflect the interaction among users in a 

community. However, having 2 different types 

of nodes: users and posts made it difficult to run 

analysis on the graph and to understand patterns 

better. The use of mixed-type nodes in the graph 

is limited as patterns between graphs can only be 

easily observed through ‘eyeballing’. Moreover, 

they are only comparable if graphs of 2 different 

technologies have similar network size, which 

greatly limits its use. 

 
Fig 4: Mixed-type nodes graph with users and posts as node 

types. 

Another graph we considered were post hyper-

links between various posts. With a vast amount 

of data available, our group wanted to visualise 

the two main types of post links: duplicate ques-

tions and references to other posts (similar to ci-

tation/PageRank algorithm). However, this was 

less suited in helping us understand interactions 

between users. Instead, it would be more useful 

to conduct text analytics on these posts to under-

stand what type of questions are commonly ref-

erenced or repeatedly asked. 

Iteration 3 – Filters on Graph 

We wanted to use cross-filter to slice and filter 

data on attributes such as time and country. 

However, we dropped the country filter as it 

would result in more disconnections on a graph 

network. It would be more suitable to plot 

growth of new technologies and their spread 

across countries using other types of visualiza-

tions e.g. map, however due to time constraints, 

we were unable to implement this idea.  

V. VISUALIZATIONS SELECTED 

Visualization 1: Cluster of Tags 

First, we queried our neo4j database on the fre-

quency of 2 tags being used together in a post 

and plotted the streamed data in a graph on 

Gephi.  

To calculate the various clusters, our group used 

Gephi’s modularity analysis, which makes use 

of the Louvain method for community detection. 

The Louvain method uses the ‘greedy algorithm’ 

to assign nodes to communities, then evaluate 

how densely connected the nodes are in the com-

munity as compared to average closeness if they 

were arranged randomly, which is known as the 

graph’s modularity. It fine tunes the assignments 

until it reaches the maximum modularity possi-

ble. The Louvain method is superior due to its 

fast processing for large graph networks.iv When 

running the graph of tags, a modularity of 0.631 

was achieved for the entire network, with 12 

communities identified. 
 

 

 

Fig 5: 

Clusters 

of tags on 

Gephi, 

with data 

streamed 

from 

neo4j da-

tabase 



We then exported the nodes and edges CSV files 

from Gephi to be used in our D3.js visualization 

on our application. We selected D3.js to visual-

ize the graph as it allows for interactivity on re-

arranging the positions of nodes and edges by 

dragging the nodes. The graph was displayed us-

ing a force-directed layout available on D3.js. 

We also used convex hulls on the various clus-

ters, which outline the area of a cluster. This al-

lows viewers to identify the clusters easily and 

make inferences on the size and overlaps of each 

cluster. The convex hulls make the graph sim-

pler to grasp and more aesthetically pleasing. In 

addition, we added a filter by cluster to allow us-

ers to interact with the different clusters and 

view changes to the graph once clusters are re-

moved.  

Visualization 2: Network Graph Analysis 

To carry out analysis between users of Stacko-

verflow, our group had to link users to one an-

other by proxy. This meant that the link from a 

user to another user is indirectly formed via an 

activity on a creator’s post. Hence, to draw the 

graph, we had to summarise activities between 

users as answering a question, commenting or 

editing on another users’ post. 

We wanted the search to be carried out dynami-

cally based on the tag entered. This would allow 

for flexibility in searching on the hundreds of 

tags available on Stackoverflow. When the 

graph of user-to-user interaction is returned, by 

default, the nodes would be populated randomly, 

thus overlapping one another and making it hard 

to make sense of any pattern. Hence, we used 

sigma.js, a graph-drawing library with the abil-

ity to run force-directed layout animations on 

large graphs in order to spot node connections 

easily in the graph. Viewers can also click on a 

specific node and to highlight the node, its edges 

and neighbouring nodes, allowing viewers to 

observe the connections of a node easily. 
 Fig 6: 

Clicking on 

a node al-

lows high-

lighting of 

its neigh-

bours and 

connections 

We measured the degree centrality of each user 

based on the in-degree and out-degree edges, 

which represent interaction. Out-degree central-

ity allows us to measure activity of a particular 

user in the network in reaching out to different 

posts. On the other hand, in-degree measures 

high attention received by posts of a particular 

user. We also measured the betweenness central-

ity of each user, which indicates the amount of 

information flow in the network that will pass 

through the user. This is calculated by summing 

up the number of shortest paths from any node 

in the network to another that passes through the 

node measured, divided by the total number of 

shortest paths in the whole network. 

 
Fig 7: Mathematical formula for calculating the betweenness 

centrality of a node v, by taking the summation of sets where 

shortest-path (s-t) passes through v, out of all pathsv 

Betweenness and degree centrality are calcu-

lated per user based on the technology or tag 

only, hence a user which belongs to many dif-

ferent technology communities would have dif-

ferent centrality scores for each community. 

VI. KEY FINDINGS & INSIGHTS 

Cluster of Tags

 
Fig 8: Clusters of tags visualized with D3.js for interactivity 

Based on the undirected graph visualized, we 

notice the 3 largest clusters of tags: C#, Javas-

cript and Java. The cluster size indicates many 

related tags, which are mainly popular tools and 

libraries. We observe that for Javascript, the 

most frequent tag is jQuery and JSON as the 

edges between them and Javascript is very short. 

The most frequent tag for C# is ASP.NET and 



ASP.NET-MVC while for Java it is arrays, An-

droid and regex. We also observe that Javascript 

is very versatile and bridges 3 other clusters, 

Ruby, Facebook and iOS to the main network. 

Some of the tags returned are the popular fea-

tures of a technology such as dictionary and list 

for Python; arrays, regex, for-loop and collec-

tions for Java; events for C# and callback and 

promise for Javascript. Due to the specific na-

ture of tags, we can thus observe that these are 

the most asked functions of the languages. 

Another cluster that is fairly large would be the 

light purple cluster with PHP and the various da-

tabases. After Javascript, Java and C#, PHP is 

the 4th highest in the number of ties with other 

nodes. It has direct links with Java and Javas-

cript, as well as other tags in both the Java and 

Javascript clusters.  

We observe that the light green cluster with 

Linux, C and C++ is quite sparse with few con-

nections. It is also interesting to note that R, a 

popular programming language for data analyt-

ics, is used mainly in isolation by Stackoverflow 

users, as it is not connected to the main network. 

Another cluster in isolation to the main network 

is Flash, which has been declining in popularity.  

Network Analysis 

To understand each community of tags better, 

we conducted network analysis on user-to-user 

interactions within a community. Using a brush 

on a timeline to select a time period, the user 

interactions within the period is returned in the 

graph. The timeline includes a bar graph of 

interaction count for each month, so users can 

identify the trend in popularity of the particular 

technology, or identify when it was introduced 

(if after 2009). 

 
Fig 9: Visualization of react-native community in 2015.  

Based on Fig. 9, the visualization for the ‘react-

native’ community is shown. The year specified 

in the timeline at the bottom is 2015, which is 

the year it was introduced. Nodes are sized based 

on out-degree, while their colour is determined 

by their betweenness score. Top 5 users in both 

categories are listed in a table on the right so that 

viewers can observe changes in top contributor 

rankings over time. To understand who these top 

contributors are, clicking their name in the table 

brings the viewer to view their user page on 

Stackoverflow. By comparing the graph for a 

technology over time, we observed several 

patterns. 

 

Fig 10: React-native community in 2015(left), which was its 

first year of launch, and in 2016 (right).  

From 2015-2016, the number of nodes increased 

by 4 times, while the number of connected 

components (lower value indicates higher 

connectedness) increased by 3.9 times. This 

shows us that even though the graph looks much 

more connected in 2016, it is only slightly more 

connected.  

 
Fig 11: Top contributors in react-native community in 

2015(left) and in 2016 (right).  

From 2015-2016, the top contributors are all 

different, except for Nader Dabitvi, who moved 

from 2nd to 1st place in degree ranking. When we 

click on his name, it shows us his current profile 

of top tags in ‘react-native’, asking a total of 8 

questions and answering 208, hence the high 

out-degree score. Looking at vijayst’s profilevii, 

the top in betweenness ranking for 2016, we 

notice that he has a more balanced proportion of 



questions asked and answered, which are 14 and 

133 respectively. Hence, his high betweenness 

score indicate that information flowing from one 

node in the network to another is likely to pass 

through him. 

We can also compare connectedness between 

different technologies.  

 

Fig 12: React-native community in 2015(left), which was its 

first year of launch; and ionic-framework community in 2014 

(right), also its first year of launch.  

For both ‘react-native’ and ‘ionic-framework’ in 

their first year of launch, we notice that their 

network size is very similar of 1707 nodes for 

react-native and 1751 nodes for ionic-

framework. However, their connectedness and 

density differ quite significantly. React-native 

has more edges (2594) as compared to ionic 

(2203), despite having fewer nodes, hence react-

native community is a denser network. Based on 

both the number of nodes and connected 

components, we observe a rough estimate of 

about 13 nodes in one connected component for 

react-native, as compared to 9 nodes for ionic-

framework, indicating that react-native 

community is more connected. 

In the case of react-native and ionic-framework, 

the connectedness of the community have 

i About. (n.d.). Retrieved November 25, 2017, from 

https://stackoverflow.com/company 
ii Robinson, D. (2017, May 9). Introducing Stack Over-

flow Trends. Retrieved November 25, 2017, from 

https://stackoverflow.blog/2017/05/09/introducing-stack-

overflow-trends/ 
iii Silge, J. (n.d.). Network graph. Retrieved November 

25, 2017, from https://www.kaggle.com/juliasilge/net-

work-graph/code 
iv Blondel, V. D., Guillaume, J., Lambiotte, R., & 

Lefebvre, E. (2008). Fast unfolding of communities in 

large networks. Journal of Statistical Mechanics: Theory 

increased as popularity increased.  Hence, we 

studied if this was also the case for a technology 

with falling popularity. Using Silverlight, as the 

community declined in numbers, its 

connectedness was severely reduced. The 

estimated number of users per connected 

component dropped from 13 users to 3 users 

from its peak in 2011 to 2016 levels. A similar 

trend is noticed in Flash, where users per 

connected component dropped from 9 to 5. This 

shows that a large decline in a technology 

community results in an increase in sparse one-

off interactions and questions.  

 
Fig 13: Silverlight community in 2011 (left), when popularity 

peaked; and in 2016 (right), in decline. 

VII. CONCLUSION 

Stackoverflow consists of various communities, 

which span a wide range of languages, libraries 

and tools. Understanding how different group of 

technologies are used together enables users and 

Stackoverflow to recommend new ways to 

integrate different technologies with one 

another. By understanding which contributors 

are essential in the network due to high 

contributions in answering and in passing of 

information across the network, Stackoverflow 

can look into more ways to encourage such 

quality engagement.  
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