Difference between revisions of "Lesson01"

From Visual Analytics and Applications
Jump to navigation Jump to search
Line 29: Line 29:
 
<br/>
 
<br/>
  
<Font size =5>'''Introduction to Visual Analytics'''</font>
+
<Font size =5>'''Demystifying Visual Analytics'''</font>
  
 
<font size = 3>[[Media:ISSS608_Lesson01-v1.3.1.pdf|Lesson 1 slides]]</font>
 
<font size = 3>[[Media:ISSS608_Lesson01-v1.3.1.pdf|Lesson 1 slides]]</font>
Line 86: Line 86:
 
|width="350pt"|Readings
 
|width="350pt"|Readings
 
|-
 
|-
|Monday||60 mins||
+
|Day 1||60 mins||
 
The best stats you've ever seen [http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen]'''Must view!'''
 
The best stats you've ever seen [http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen]'''Must view!'''
  
Line 93: Line 93:
 
|-
 
|-
 
|-
 
|-
|Tuesday||60 mins||
+
|Day 2||60 mins||
 
Why Visual Analytics [http://www.youtube.com/watch?v=5uGRGqCFryg]'''Must view!'''
 
Why Visual Analytics [http://www.youtube.com/watch?v=5uGRGqCFryg]'''Must view!'''
  
Line 102: Line 102:
 
|-
 
|-
  
|Wednesday||3hrs||
+
|Day 3||3hrs||
  
 
Lesson 01
 
Lesson 01
Line 110: Line 110:
  
 
|-
 
|-
|Thursday||60 mins||
+
|Day 4||60 mins||
 
Demystifying Visual Analytics, ''IEEE Computer Graphics and Applications, March/April 2009'' e-journal @smu library '''Must read!'''
 
Demystifying Visual Analytics, ''IEEE Computer Graphics and Applications, March/April 2009'' e-journal @smu library '''Must read!'''
  
Line 121: Line 121:
 
|-
 
|-
  
|Friday||60 mins||
+
|Day 5||60 mins||
 
Visual Analytics - Mastering the Information Age [http://www.youtube.com/watch?v=5i3xbitEVfs]'''Must view!'''
 
Visual Analytics - Mastering the Information Age [http://www.youtube.com/watch?v=5i3xbitEVfs]'''Must view!'''
  

Revision as of 08:54, 9 August 2016

Vaa.jpg ISSS608 Visual Analytics and Applications

About

Weekly Session

Assignments

Visual Analytics Project

Course Resources

 


Demystifying Visual Analytics

Lesson 1 slides

Content

Introduction to the course

  • Why this course?
  • What does it cover?
  • Who is involved?
  • What assignments?
  • Rules to be followed

Motivations of Visual Analytics

  • Massive data
  • Complex problem
  • Visual Representation
  • New visual paradigm
  • Hidden insight

The Visual Analytics Framework

  • The Science of Analytical Reasoning
  • Sense-Making Methods
  • Components of visual analytics
  • History of visual analytics
  • The visual analytics process
  • Application challenges
  • Technical challenges

A Gallery of Visual Analytics applications

Visualising and Analysing Univariate Data

  • Data discovery with bar chart
  • Data discovery with dotplot

Visualising and Analysing Bivariate Categorical Data

  • Exploring two categorical variables
  • Working with mosaic plot and trellis
  • Bivariate categorical data analysis best practices


Hands-on Session

Self-learning Tableau

  • Getting Started [1]
  • Tableau Interface [2]
  • Connecting to Data: From Getting Started with Data to Data Blending


Daily Readings

Day Time required Readings
Day 1 60 mins

The best stats you've ever seen [3]Must view!

A Tour through the Visualization Zoo [4]Must read!

Day 2 60 mins

Why Visual Analytics [5]Must view!

Andrew Gelman and Antony Unwin (2011) Infovis and Statistical Graphics: Different Goals, Different Looks [6]Must read!

Robert Kosara (2012) Visualization: It’s More than Pictures! [7]Must read!

Day 3 3hrs

Lesson 01

  • In-class hands-on exercise 01


Day 4 60 mins

Demystifying Visual Analytics, IEEE Computer Graphics and Applications, March/April 2009 e-journal @smu library Must read!

The beauty of data visualization [8]Must view!

Tools for Visualising [9]

Visual analysis for everyone [10]

Day 5 60 mins

Visual Analytics - Mastering the Information Age [11]Must view!

Data Visualisation, Australian Bureau of Statistics Research Paper, July 2007 [12]


References

James J. Thomas & Kristin A. Cook (ed) (2005) Illuminating the Path: The Research and Development Agenda of Visual Analytics [13]


Discussion

Discussion Lesson 01