Difference between revisions of "Lesson02"

From Visual Analytics and Applications
Jump to navigation Jump to search
 
(8 intermediate revisions by the same user not shown)
Line 31: Line 31:
 
<font size =5>'''Show Me the Numbers: Designing Graphs for Data Discovery'''</font>
 
<font size =5>'''Show Me the Numbers: Designing Graphs for Data Discovery'''</font>
  
<font size = 3>[[Media:ISSS608_Lesson02-v1.3.1.pdf|Lesson 2 slides]]</font>
+
<font size = 3>[[Media:ISSS608_Lesson02.pdf|Lesson 2 slides in pdf]]</font> or [http://slides.com/tskam/isss608-lesson02 web slides]
  
 
== Content ==
 
== Content ==
Line 85: Line 85:
 
{| border="1" cellpadding="1"  
 
{| border="1" cellpadding="1"  
 
|-
 
|-
|width="5pt"|Day
+
|width="40pt"|Day
|width="10pt"|Time required  
+
|width="40pt"|Time required  
|width="350pt"|Readings
+
|width="400pt"|Readings
 
|-
 
|-
|Monday||60 minutes||
 
Tapping the Power of Visual Perception [http://www.perceptualedge.com/articles/ie/visual_perception.pdf]'''Must read!'''
 
  
Visualising Statistics: The importance of seeing not just describing data [http://stats.cwslive.wiley.com/details/feature/6314441/Visualising-Statistics-The-importance-of-seeing-not-just-describing-data.html]'''Must read!'''
+
|Day 1||60 mins||
 +
The Golden Age of Statistical Graphics [http://datavis.ca/papers/golden-STS268.pdf]
  
Graphical Journalists Should, First and Foremost, Be Journalists [http://www.perceptualedge.com/blog/?p=2121] '''Must read!'''
+
Eight Principles of Data Visualization [http://www.information-management.com/news/Eight-Principles-of-Data-Visualization-10023032-1.html?zkPrintable=1&nopagination=1]
  
 +
The Dataviz Design Process: 7 Steps for Beginners [http://annkemery.com/dataviz-design-process/]
 
|-
 
|-
 +
 +
|Day 2||60 mins||
 +
Tapping the Power of Visual Perception [http://www.perceptualedge.com/articles/ie/visual_perception.pdf]
 +
 +
Quantitative Literacy Across the Curriculum [http://www.perceptualedge.com/articles/visual_business_intelligence/quantitative_literacy_across_curriculum.pdf]
 +
 +
Sometimes We Must Raise Our Voices [http://www.perceptualedge.com/articles/visual_business_intelligence/sometimes_we_must_raise_our_voices.pdf]
 
|-
 
|-
|Tuesday||60 minutes||
+
 
 +
|Day 3||60 mins||Best Practices for Understanding Quantitative Data [http://www.perceptualedge.com/articles/b-eye/quantitative_data.pdf]
 +
 
 +
Data Visualization: Rules for Encoding Values in Graph [http://www.perceptualedge.com/articles/b-eye/encoding_values_in_graph.pdf]
 +
 
 
7 Basic Rules for Making Charts and Graphs [http://flowingdata.com/2010/07/22/7-basic-rules-for-making-charts-and-graphs/]
 
7 Basic Rules for Making Charts and Graphs [http://flowingdata.com/2010/07/22/7-basic-rules-for-making-charts-and-graphs/]
 +
|-
  
Sometimes We Must Raise Our Voices [http://www.perceptualedge.com/articles/visual_business_intelligence/sometimes_we_must_raise_our_voices.pdf]'''Must read!'''
+
|Day 4||60 mins||
 +
Choosing Colors for Data Visualization [http://www.perceptualedge.com/articles/b-eye/choosing_colors.pdf]
  
DSC Webinar Series The Beautiful Science of Data Visualization [https://vimeo.com/126302031] '''Must View!'''
+
Line Graphs and Irregular Intervals: An Incompatible Partnership [http://www.perceptualedge.com/articles/visual_business_intelligence/line_graphs_and_irregular_intervals.pdf]
  
 +
Self-learning Tableau (30 minutes)
 
|-
 
|-
|-
 
|Wednesday||60 minutes||
 
Quantitative Literacy Across the Curriculum [http://www.perceptualedge.com/articles/visual_business_intelligence/quantitative_literacy_across_curriculum.pdf]
 
  
Data Visualization: Rules for Encoding Values in Graph [http://www.perceptualedge.com/articles/b-eye/encoding_values_in_graph.pdf]'''Must read!'''
+
|Day 5||60 mins||'''Working with Tableau'''
 +
 
 +
Getting Started with Visual Analytics [http://www.tableau.com/learn/tutorials/on-demand/getting-started-visual-analytics]
 +
 
 +
Pareto Chart [http://www.tableau.com/learn/tutorials/on-demand/pareto-charts]
 +
 
 +
Do More with Bar Charts in Tableau 10 [http://www.tableau.com/about/blog/2016/6/mark-sizing-tableau-10-56014]
  
Best Practices for Understanding Quantitative Data [http://www.perceptualedge.com/articles/b-eye/quantitative_data.pdf]
+
Boxplot [http://www.tableau.com/learn/tutorials/on-demand/box-plots]
|-
 
|-
 
|Thursday||60 minutes||
 
Choosing Colors for Data Visualization [http://www.perceptualedge.com/articles/b-eye/choosing_colors.pdf]'''Must read!'''
 
  
Line Graphs and Irregular Intervals: An Incompatible Partnership [http://www.perceptualedge.com/articles/visual_business_intelligence/line_graphs_and_irregular_intervals.pdf]
+
Histogram [http://www.tableau.com/learn/tutorials/on-demand/histograms]
  
Learning to See Data [http://www.nytimes.com/2015/03/29/sunday-review/learning-to-see-data.html?_r=0]
 
 
|-
 
|-
 
|-
 
|-

Latest revision as of 18:46, 22 August 2016

Vaa.jpg ISSS608 Visual Analytics and Applications

About

Weekly Session

Assignments

Visual Analytics Project

Course Resources

 


Show Me the Numbers: Designing Graphs for Data Discovery

Lesson 2 slides in pdf or web slides

Content

Data Foundation

  • Types of data
  • Structure within and between records
  • Data preprocessing: ETL (Extract, Transform, and Loading)

Designing Charts to Enlighten

  • What we mean by an enlighten graph
  • JunkCharts: Understand the limitation of Excel charts
  • Principles of Graphic Design
  • Semiology of graphics


Human Perception and Information Processing

  • What Is Perception?
  • Physiology
  • Perceptual Processing
  • Perception in Visualization
  • Metrics

Perceptual and Design Principles for Effective Visual Analytics

  • System, Color, Gestalt Laws, Pre-attentive processing
  • Representation: The encoding of value and relation
  • Visual Perception and Quantitative Communication

Visualising and Analysing Univariate Data

  • Data discovery with histogram
  • Data discovery with boxplot

Visualising and Analysing Bivariate Continuous Data

  • Exploring two continuous variables (i.e. scatter plot)
  • Correlation analysis
  • Bivariate data analysis best practices

Visualising and Analysing One Categorical and One Continuous Data

  • Exploring relationship between one category variable and one continuous variable
  • Performing simple logistic regression
  • Bivariate data visualisation best practices


Hands-on Session

  • Visualising and analysing bivariate continuous data using scateerplot
  • Visualising and analysing bivariate continuous data using mosaic plot
  • Visualising and analysing one continuous and one continuous variables trellis


Daily Readings

Day Time required Readings
Day 1 60 mins

The Golden Age of Statistical Graphics [1]

Eight Principles of Data Visualization [2]

The Dataviz Design Process: 7 Steps for Beginners [3]

Day 2 60 mins

Tapping the Power of Visual Perception [4]

Quantitative Literacy Across the Curriculum [5]

Sometimes We Must Raise Our Voices [6]

Day 3 60 mins Best Practices for Understanding Quantitative Data [7]

Data Visualization: Rules for Encoding Values in Graph [8]

7 Basic Rules for Making Charts and Graphs [9]

Day 4 60 mins

Choosing Colors for Data Visualization [10]

Line Graphs and Irregular Intervals: An Incompatible Partnership [11]

Self-learning Tableau (30 minutes)

Day 5 60 mins Working with Tableau

Getting Started with Visual Analytics [12]

Pareto Chart [13]

Do More with Bar Charts in Tableau 10 [14]

Boxplot [15]

Histogram [16]

References

Robbins, Naomi B. (2005) Creating More Effective Graphs, John Wiley & Sons, New Jersey, USA.

Edward R. Tufte (2001) The Visual Display of Quantitative Information (2nd Edition), Graphics press, Connecticut, USA. Chapter 4-9

Stephen Few (2004) Show Me the Numbers: Designing Tables and Graphs to Englighten, Analytical Press, Oakland, USA.

Wong, Dona M. (2010) The Wall Street Journal Guide to Information Graphics, W. W. Norton & Company, Inc. New York.


Discussion

Discussion Lesson 02