Talk:Lesson01

From Visual Analytics for Business Intelligence
Revision as of 17:16, 17 August 2016 by Wx.tan.2013 (talk | contribs) (Critique of Week 1's Reading (Visual Analysis for Everyone) - Gwendoline Tan)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Visual Analysis for Everyone

The whitepaper, published by Tableau, provided me with a great insight on the field of visual analytics. The examples illustrated in the paper strongly demonstrated the need for a data analyst to have an interactive visual interface in order to perform their job well. Prior to the course, I have been using Microsoft Excel as a main tool for data presentation and analysis. I felt that it was one of a few de facto software for visualizing data quickly and easily. However, after reading this white paper, I have a clearer understanding of what visual analytics actually entails and having the flexibility for users to express their thoughts freely on a user interface is indeed a powerful tool in the field of visual analytics. In this case, Microsoft Excel does seem constrained and restrictive for the analyst to perform analysis on the tool itself. Of course, if an analyst knows the end result of his/her analysis, Microsoft Excel can be a useful tool to generate those charts for data presentation. However, during the process of analysis where one has to frequently change data and views based on different context, it does not seem to be as useful as other visual analytics tools out there (e.g. Tableau, Qlik Sense etc.) where users can interact with the data/views directly.

To resolve existing data visualisation and analysis problems, Tableau implemented 5 principles into their software. Together with VizQL, it allows flexibility for users to express and change visualizations to answer questions as they analyse on the fly. The use of visualization best practices further allows an analyst to display their data effectively. In my opinion, one limitation of having best practices and standard charts/graphs may constrain user’s creativity to think of newer and better ideas to illustrate their analysis results. Although best practices are followed by many and it is understandable by everyone, there could be better ways to represent data better. This could not be easily achieved by the tool itself and requires time and effort on the analyst to decipher ways to do so. Despite so, Tableau is undeniably a good tool for all visual analysts to begin with analysing and exploring data to discover new insights and create additional business value for their organizations.
--Gwendoline Tan Wan Xin