Difference between revisions of "Lesson01"

From Visual Analytics for Business Intelligence
Jump to navigation Jump to search
 
(15 intermediate revisions by the same user not shown)
Line 31: Line 31:
 
<Font size =5>'''Introduction to Visual Analytics'''</font>
 
<Font size =5>'''Introduction to Visual Analytics'''</font>
  
<font size = 3>[[Media:IS428_Lesson01.pdf|Lesson 1 slides]]</font>
+
<font size = 3>'''[http://slides.com/tskam/deck Lesson 1 slides]'''</font>
 +
 
  
 
== Content ==
 
== Content ==
Line 75: Line 76:
 
{| border="1" cellpadding="1"  
 
{| border="1" cellpadding="1"  
 
|-
 
|-
|width="5pt"|Day
+
|width="40pt"|Day
|width="10pt"|Time required  
+
|width="30pt"|Time required  
|width="350pt"|Readings
+
|width="400pt"|Readings
 
|-
 
|-
|Monday||60 mins||Why Visual Analytics [http://www.youtube.com/watch?v=5uGRGqCFryg]'''Must view!'''
+
 
 +
|Day 1||60 mins||Why Visual Analytics [http://www.youtube.com/watch?v=5uGRGqCFryg]'''Must view!'''
  
 
A Tour through the Visualization Zoo [http://queue.acm.org/detail.cfm?id=1805128]'''Must read!'''
 
A Tour through the Visualization Zoo [http://queue.acm.org/detail.cfm?id=1805128]'''Must read!'''
  
The beauty of data visualization [http://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization.html]
 
 
Self-Learning Tableau (30mins)
 
 
|-
 
|-
  
|Tuesday||60 mins||
+
|Day 2||60 mins||
  
 
Visual analysis for everyone [http://www.tableausoftware.com/whitepapers/visual-analysis-everyone]
 
Visual analysis for everyone [http://www.tableausoftware.com/whitepapers/visual-analysis-everyone]
Line 94: Line 93:
 
Visual Analytics - Mastering the Information Age [http://www.youtube.com/watch?v=5i3xbitEVfs]
 
Visual Analytics - Mastering the Information Age [http://www.youtube.com/watch?v=5i3xbitEVfs]
  
Self-Learning Tableau (30mins)
 
 
|-
 
|-
|Wednesday||60 mins||Demystifying Visual Analytics, ''IEEE Computer Graphics and Applications, March/April 2009'' e-journal @smu library
+
|Day 3||60 mins||Demystifying Visual Analytics, ''IEEE Computer Graphics and Applications, March/April 2009'' e-journal @smu library
  
Tools for Visualising [http://www.visualisingdata.com/index.php/resources/]
+
The beauty of data visualization [http://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization.html]
  
 
Data Visualisation, Australian Bureau of Statistics Research Paper, July 2007 [http://www.abs.gov.au/ausstats/abs@.nsf/mf/1211.0.55.001]  
 
Data Visualisation, Australian Bureau of Statistics Research Paper, July 2007 [http://www.abs.gov.au/ausstats/abs@.nsf/mf/1211.0.55.001]  
  
Self-Learning Tableau (30mins)
 
 
|-
 
|-
|Thursday||60 mins||
+
|Day 4||60 mins||
 
Andrew Gelman and Antony Unwin (2011) Infovis and Statistical Graphics: Different Goals, Different Looks [http://www.stat.columbia.edu/~gelman/research/published/vis14.pdf]
 
Andrew Gelman and Antony Unwin (2011) Infovis and Statistical Graphics: Different Goals, Different Looks [http://www.stat.columbia.edu/~gelman/research/published/vis14.pdf]
  
 
Robert Kosara (2012) Visualization: It’s More than Pictures! [http://stat-computing.org/newsletter/issues/scgn-22-1.pdf]
 
Robert Kosara (2012) Visualization: It’s More than Pictures! [http://stat-computing.org/newsletter/issues/scgn-22-1.pdf]
  
Self-Learning Tableau (30mins)
 
 
|-
 
|-
|Friday||3 hours||Lesson discussion and hands-on exercise
+
|Day 5||3 hours||
 +
 
 +
Self-Learning Tableau
 +
* Getting Started [http://www.tableau.com/learn/tutorials/on-demand/getting-started]
 +
* Tableau Interface [http://www.tableau.com/learn/tutorials/on-demand/tableau-interface]
 +
* Connecting to Data: From Getting Started with Data to Data Blending [http://www.tableau.com/learn/tutorials/on-demand/getting-started-data] 
 +
 
 +
 
 
|-
 
|-
 
|-
 
|-
 
|}
 
|}
 
  
 
== References ==
 
== References ==

Latest revision as of 20:16, 13 August 2016

Va.jpg IS428 Visual Analytics for Business Intelligence

About

Weekly Session

Assignments

Visual Analytics Project

Course Resources

 


Introduction to Visual Analytics

Lesson 1 slides


Content

Introduction to the course

  • Why this course?
  • What does it cover?
  • Who is involved?
  • What assignments?
  • Rules to be followed

Motivations of Visual Analytics

  • Massive data
  • Complex problem
  • Visual Representation
  • New visual paradigm
  • Hidden insight

The Visual Analytics Framework

  • The Science of Analytical Reasoning
  • Sense-Making Methods
  • Components of visual analytics
  • History of visual analytics
  • The visual analytics process
  • Application challenges
  • Technical challenges

A Gallery of Visual Analytics applications


Hands-on Session

Self-learning Tableau

  • Getting Started [1]
  • Tableau Interface [2]
  • Connecting to Data: From Getting Started with Data to Data Blending

My First Date with Tableau


Daily Readings

Day Time required Readings
Day 1 60 mins Why Visual Analytics [3]Must view!

A Tour through the Visualization Zoo [4]Must read!

Day 2 60 mins

Visual analysis for everyone [5]

Visual Analytics - Mastering the Information Age [6]

Day 3 60 mins Demystifying Visual Analytics, IEEE Computer Graphics and Applications, March/April 2009 e-journal @smu library

The beauty of data visualization [7]

Data Visualisation, Australian Bureau of Statistics Research Paper, July 2007 [8]

Day 4 60 mins

Andrew Gelman and Antony Unwin (2011) Infovis and Statistical Graphics: Different Goals, Different Looks [9]

Robert Kosara (2012) Visualization: It’s More than Pictures! [10]

Day 5 3 hours

Self-Learning Tableau

  • Getting Started [11]
  • Tableau Interface [12]
  • Connecting to Data: From Getting Started with Data to Data Blending [13]


References

James J. Thomas & Kristin A. Cook (ed) (2005) Illuminating the Path: The Research and Development Agenda of Visual Analytics [14]


Discussion

Discussion Lesson 01