Difference between revisions of "TheBigScreen"

From Visual Analytics for Business Intelligence
Jump to navigation Jump to search
Line 36: Line 36:
  
 
==Data==
 
==Data==
===Data Source===
+
We are using the [https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset IMDB 5000 Movie Dataset] from Kaggle. The Internet Movie Database (IMDB) is an online database of information related to films, television programs and video games [https://en.wikipedia.org/wiki/IMDb]. Amongst its functions, IMDB allows users rate movies on a scale of 1 to 10.
 +
 
 +
The dataset contains the following variables, including but not limited to:
 +
* movie title
 +
* director name
 +
* actors’ names and Facebook likes
 +
* length of movie
 +
* year
 +
* gross earnings
 +
* genres
 +
* language
 +
* country
 +
* content rating
 +
* budget
 +
* IMDB rating
  
 
==Visualization Strategy==
 
==Visualization Strategy==

Revision as of 15:34, 4 October 2016

Proposal Project Presentation Poster Application Research Paper





Project Summary

Problem and Motivation

Is it possible to predict how good a movie will be before it even screens? This is a subjective question. While some rely on movie critics and early reviews, others depend on instinct. However, we know reviews can take a long time to gather and human instinct is simply unreliable. Thousands of movies are produced every year and all of them our clamouring for the $11 we spend on movie tickets! Our group wants to know if we can predict which movies are worth you spending your money and time on.

Data

We are using the IMDB 5000 Movie Dataset from Kaggle. The Internet Movie Database (IMDB) is an online database of information related to films, television programs and video games [1]. Amongst its functions, IMDB allows users rate movies on a scale of 1 to 10.

The dataset contains the following variables, including but not limited to:

  • movie title
  • director name
  • actors’ names and Facebook likes
  • length of movie
  • year
  • gross earnings
  • genres
  • language
  • country
  • content rating
  • budget
  • IMDB rating

Visualization Strategy

Research on Related Works

Research Links

Visualization Models

Proposed Storyboard Visualization

Technical Challenges

Milestone and Schedule

Comments and Feedback please!